电池滞回模型下的SOC估计方法及系统与流程
未命名
08-03
阅读:67
评论:0

电池滞回模型下的soc估计方法及系统
技术领域
1.本发明涉及电池检测技术领域,具体地涉及一种电池滞回模型下的soc估计方法及系统。
背景技术:
2.电池具有滞回特性,即充放电开路电压曲线不一致,但却形成了一组首尾相接,其间有空隙的带状滞回型构造,也就是电池开路电压迟滞。通过滞回现象,存在相同soc点将获得与其对应的不同开路电压值,导致基于电池模型的soc估计存在误差。
技术实现要素:
3.本发明实施例的目的是提供一种电池滞回模型下的soc估计方法及系统,解决了目前soc估计方法所存在的估计精度较差的问题。
4.为了实现上述目的,本发明实施例一方面提供一种soc估计方法,包括:依据待估计的电池构建电池滞回模型;建立所述电池滞回模型的端电压方程;确定电池的soc估计方程;将所述电池滞回模型的电流作为输入量,将所述电池滞回模型的端电压作为输出量,构建所述电池滞回模型的状态方程和观测方程;采用扩展卡尔曼滤波算法确定所述状态方程的过程噪声和观测方程;根据所述过程噪声和所述soc估计方程确定所述电池滞回模型的soc值;根据所述soc值确定所述电池滞回模型的观测噪声;根据所述观测噪声和所述观测方程确定所述电池滞回模型的端电压。
5.可选地,构建的所述电池滞回模型包括:第一电阻,所述第一电阻的一端连接至所述电源的正极;第二电阻,所述第二电阻的一端连接至所述第一电阻的另一端;第三电阻,所述第三电阻的一端连接至所述第二电阻的另一端,所述第三电阻的另一端作为所述电池滞回模型的一个输出端;第一电容,所述第一电容的一端与所述第三电阻的一端连接,所述第一电容的另一端与所述第三电阻的另一端连接;电源,所述电源的负极作为所述电池滞回模型的另一个输出端。
6.可选地,建立所述电池滞回模型的端电压方程,包括:根据公式(1)确定所述端电压方程,,(1)其中,为第次计算时的端电压,为第次计算时的放电开路电压,为第次计算时所述第一电阻两端的电压,为第次计算时所述第一电容和所述第三电
阻并联支路两端的电压,为所述第二电阻的阻值。
7.可选地,确定电池的soc估计方程,包括:根据公式(2)和公式(3)确定所述soc估计方程,,(2)其中,为电池soc值,为初始soc值,为电池的额定容量,为soc电路中的电流,为采样时间;,(3)其中,为第次计算时的电池soc值,为第次计算时的电池soc值,为电池的额定容量,为第次计算时采用扩展卡尔曼滤波算法估计的soc电路中的电流,为采样周期。
8.可选地,将所述电池滞回模型的电流作为输入量,将所述电池滞回模型的端电压作为输出量,构建所述电池滞回模型的状态方程和观测方程,包括:根据公式(4)确定所述状态方程,,(4)其中,、为系数矩阵,为第次计算时均值为0的过程噪声,为第次计算时实际测量的soc电路中的电流,为第次计算时实际测量的soc电路中的电流,为第次计算时采用扩展卡尔曼滤波算法估计的soc电路中的电流;根据公式(5)确定所述观测方程,,(5)其中,、为系数矩阵,为第次计算时均值为0的测量噪声,为第次计算时实际测量的端电压,为第次计算时实际测量的soc电路中的电流,为第次计算时采用扩展卡尔曼滤波算法估计的soc电路中的电流。
9.可选地,所述估计方法还包括:根据公式(6)至公式(9)修正所述状态方程和观测方程,,(6)其中,为系数矩阵,为采样周期,为所述第三电阻的阻值,为所述第一电容的电容值;,(7)其中,为系数矩阵,为采样周期,为所述第三电阻的阻值,为所述第一电容的电容值,为电池的额定容量;
,(8)其中,为系数矩阵,为所述第一电阻两端的电压,为放电开路电压,为电池soc值;,(9)其中,为系数矩阵,为电池内阻。
10.可选地,采用扩展卡尔曼滤波算法确定所述状态方程的过程噪声和观测方程,包括:根据公式(10)和(11)确定所述过程噪声,,(10)其中,为第次计算,为第次计算,为第次计算时系统过程噪声的协方差矩阵,为随机变数的期望值,为第次计算时均值为0的过程噪声,为第次计算时均值为0的过程噪声;,(11)其中,为预设的常数,为第次计算时系统过程噪声的协方差矩阵,为第次计算时系统过程噪声的协方差矩阵,为采用扩展卡尔曼滤波算法估计的电池端电压值与实际测量的端电压之间的相对残值。
11.可选地,根据所述soc值确定所述电池滞回模型的观测噪声,包括:在判断所述soc值是否大于或等于预设的第一soc阈值;在判断所述soc值大于或等于预设的第一soc阈值的情况下,根据公式(12)和(13)修正所述观测噪声,,(12)其中,为第次计算,为第次计算,为第次计算时系统过程噪声的协方差矩阵,为随机变数的期望值,为第次计算时均值为0的观测噪声,为第次计算时均值为0的观测噪声;,(13)其中,为第次计算时系统观测噪声的协方差矩阵,是预设的常数,为电池内阻,为第一soc阈值,为电池soc值;在判断所述soc值小于预设的第二soc阈值的情况下,根据公式(12)和(14)修正所述观测噪声,其中,所述第二soc阈值小于所述第一soc阈值,,(14)其中,为第次计算时系统观测噪声的协方差矩阵,是预设的常数,为电池
内阻,为第二soc阈值,为电池soc值。
12.另一方面,本发明还提供一种电池滞回模型下的soc估计系统,所述估计系统包括处理器,所述处理器被配置成执行如上述任一所述的估计方法。
13.通过上述技术方案,本发明提供一种电池滞回模型下的soc估计方法及系统,通过建立电池的滞回模型,先建立电池滞回模型的端电压方程和电池的soc估计方程,再构建电池滞回模型的状态方程和观测方程,采用扩展卡尔曼滤波算法修正状态方程的过程噪声的协方差矩阵,利用soc区间动态修正观测方程的观测噪声的协方差矩阵。与现有技术相比,一方面,本发明可以体现电池的滞回特性,提高了电池模型的准确程度,另一方面,本发明可以动态修正扩展卡尔曼滤波算法中的协方差矩阵,避免了滤波器发散的问题,同时提高了soc的估计精度,解决目前soc估计方法所存在的估计精度较差的问题。
14.本发明实施例的其它特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
15.附图是用来提供对本发明实施例的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明实施例,但并不构成对本发明实施例的限制。在附图中:图1是根据本发明的一个实施方式的soc估计方法的流程图;图2是根据本发明的一个实施方式的电池滞回模型的电路图;图3是根据本发明的一个实施方式的修正观测噪声的流程图。
16.附图标记说明
具体实施方式
以下结合附图对本发明实施例的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明实施例,并不用于限制本发明实施例。
17.另外,若本发明实施方式中有涉及“第一”、“第二”等的描述,则该“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施方式之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。
18.如图1所示是根据本发明的一个实施方式的soc估计方法的流程图,在该图1中,该估计方法可以包括:在步骤s10中,依据待估计的电池构建电池滞回模型;在步骤s11中,建立电池滞回模型的端电压方程;在步骤s12中,确定电池的soc估计方程;
在步骤s13中,将电池滞回模型的电流作为输入量,将电池滞回模型的端电压作为输出量,构建电池滞回模型的状态方程和观测方程;在步骤s14中,采用扩展卡尔曼滤波算法确定状态方程的过程噪声和观测方程;在步骤s15中,根据过程噪声和soc估计方程确定电池滞回模型的soc值;在步骤s16中,根据soc值确定电池滞回模型的观测噪声;在步骤s17中,根据观测噪声和观测方程确定电池滞回模型的端电压。
19.在如图1所示的soc估计方法中,依据待估计的电池构建电池滞回模型,根据电池滞回模型,依据基尔霍夫电流电压定律建立电池滞回模型的端电压方程,并确定电池的soc估计方程。在电池的soc估计方程中,将电池的soc值安时积分,并将其离散化,将电池滞回模型的电流作为输入量,将电池滞回模型的端电压作为输出量,构建电池滞回模型的状态方程和观测方程。但是,对于一些复杂的非线性系统来说,其噪声方差是难以准确获得的,当噪声先验估计不准时,特别是在过程噪声协方差矩阵估算误差过大的情况下,会引起soc估算误差增大。因此在本发明的该实施方式中,采用扩展卡尔曼滤波算法修正状态方程的过程噪声的协方差矩阵,利用soc区间动态修正观测方程的观测噪声的协方差矩阵,相较于现有技术而言,提高了soc的估计精度。
20.在本发明的一个实施方式中,对于该电池滞回模型具体结构,可以是本领域人员所知的多种,在本发明的一个示例中,可以如图2所示。图2是根据本发明的一个实施方式的电池滞回模型的电路图,在该图中,该电池滞回模型包括第一电阻r1、第二电阻r2、第三电阻r3、第一电容c1和电源ue。第一电阻r1的一端连接至电源ue的正极;第二电阻r2的一端连接至第一电阻r1的另一端第三电阻r3的一端连接至第二电阻r2的另一端,第三电阻r3的另一端作为电池滞回模型的一个输出端;第一电容c1的一端与第三电阻r3的一端连接,第一电容c1的另一端与第三电阻r3的另一端连接;电源ue的负极作为电池滞回模型的另一个输出端。电池滞回模型的电流依次经过第三电阻r3和第一电容c1并联的支路、第二电阻r2和第一电阻r1,再由电源ue的负极输出。该电池滞回模型可以体现电池的滞回特性,提高了电池模型的准确程度。
21.在步骤s11中,建立电池滞回模型的端电压方程。对于如何建立电池滞回模型的端电压方程,可以是本领域人员所知的多种方式,在本发明的一个示例中,可以是例如根据公式(1)确定端电压方程,,(1)其中,为第次计算时的端电压,为第次计算时的放电开路电压,为第次计算时第一电阻r1两端的电压,为第次计算时第一电容c1和第三电阻r3并联支路两端的电压,为第二电阻r2的阻值。
22.在步骤s12中,确定电池的soc估计方程。对于如何确定电池的soc估计方程,可以是本领域人员所知的多种方式,在本发明的一个示例中,可以是例如根据公式(2)和公式(3)来确定soc估计方程,,(2)其中,为电池soc值,为初始soc值,为电池的额定容量,为soc电路
中的电流,为采样时间;,(3)其中,为第次计算时的电池soc值,为第次计算时的电池soc值,为电池的额定容量,为第次计算时采用扩展卡尔曼滤波算法估计的soc电路中的电流,为采样周期。
23.在步骤s13中,构建电池滞回模型的状态方程和观测方程。对于如何构建电池滞回模型的状态方程和观测方程,可以是本领域人员所知的多种方式,在本发明的一个示例中,将电池滞回模型的电流作为输入量,将电池滞回模型的端电压作为输出量,根据公式(4)确定状态方程,根据公式(5)确定观测方程,,(4)其中,、为系数矩阵,为第次计算时均值为0的过程噪声,为第次计算时实际测量的soc电路中的电流,为第次计算时实际测量的soc电路中的电流,为第次计算时采用扩展卡尔曼滤波算法估计的soc电路中的电流;根据公式(5)确定观测方程,,(5)其中,、为系数矩阵,为第次计算时均值为0的测量噪声,为第次计算时实际测量的端电压,为第次计算时实际测量的soc电路中的电流,为第次计算时采用扩展卡尔曼滤波算法估计的soc电路中的电流。
24.在本发明的一个实施方式中,对于状态方程和观测方程中系数矩阵的具体形式,可以是本领域人员所知的多种,在本发明的一个示例中,可以是例如(6)至公式(9),,(6)其中,为系数矩阵,为采样周期,为第三电阻r3的阻值,为第一电容c1的电容值;,(7)其中,为系数矩阵,为采样周期,为第三电阻r3的阻值,为第一电容c1的电容值,为电池的额定容量;,(8)其中,为系数矩阵,为第一电阻r1两端的电压,为放电开路电压,为电池soc值;,(9)
其中,为系数矩阵,为电池内阻。
25.在步骤s14中,确定状态方程的过程噪声。对于确定状态方程的过程噪声的方式,可以是本领域人员所知的多种,在本发明的一个示例中,可以是例如采用扩展卡尔曼滤波算法根据公式(10)和(11)来确定,,(10)其中,为第次计算,为第次计算,为第次计算时系统过程噪声的协方差矩阵,为随机变数的期望值,为第次计算时均值为0的过程噪声,为第次计算时均值为0的过程噪声。
26.在本发明的一个实施方式中,对于修正观测噪声的方式,可以是本领域人员所知的多种,可以是例如公式(11),,(11)其中,为预设的常数,为第次计算时系统过程噪声的协方差矩阵,为第次计算时系统过程噪声的协方差矩阵,为采用扩展卡尔曼滤波算法估计的电池端电压值与实际测量的端电压之间的相对残值。
27.在步骤s16中,根据soc值确定电池滞回模型的观测噪声。对于确定电池滞回模型的观测噪声方式,可以是本领域人员所知的多种,在本发明的一个示例中,可以是例如根据公式(12)来确定,,(12)其中,为第次计算,为第次计算,为第次计算时系统过程噪声的协方差矩阵,为随机变数的期望值,为第次计算时均值为0的观测噪声,为第次计算时均值为0的观测噪声。
28.在本发明的一个实施方式中,对于修正观测噪声的方式,可以是本领域人员所知的多种,在本发明的一个示例中,具体地,如图3所示,可以包括:在步骤s20中,判断soc值是否大于或等于预设的第一soc阈值,在判断soc值大于或等于预设的第一soc阈值的情况下,执行步骤s21,在判断soc值小于预设的第一soc阈值的情况下,执行步骤s22;在步骤s21中,根据公式(13)修正观测噪声,,(13)其中,为第次计算时系统观测噪声的协方差矩阵,是预设的常数,为电池内阻,为第一soc阈值,为电池soc值;在步骤s22中,判断soc值是否小于预设的第二soc阈值,其中,第二soc阈值小于第一soc阈值,在判断soc值小于预设的第二soc阈值的情况下,执行步骤s23,否则,执行步骤s24;
在步骤s23中,根据公式(14)修正观测噪声,,(14)其中,为第次计算时系统观测噪声的协方差矩阵,是预设的常数,为电池内阻,为第二soc阈值,为电池soc值;在步骤s24中,观测噪声的值不变。
29.另一方面,本发明还提供一种电池滞回模型下的soc估计系统,该估计系统包括处理器,该处理器被配置成执行如上述任一的估计方法。
30.通过上述技术方案,本发明提供一种电池滞回模型下的soc估计方法及系统,通过建立电池的滞回模型,先建立电池滞回模型的端电压方程和电池的soc估计方程,再构建电池滞回模型的状态方程和观测方程,采用扩展卡尔曼滤波算法修正状态方程的过程噪声的协方差矩阵,利用soc区间动态修正观测方程的观测噪声的协方差矩阵。与现有技术相比,一方面,本发明可以体现电池的滞回特性,提高了电池模型的准确程度,另一方面,本发明可以动态修正扩展卡尔曼滤波算法中的协方差矩阵,避免了滤波器发散的问题,同时提高了soc的估计精度,解决目前soc估计方法所存在的估计精度较差的问题。
31.以上结合附图详细描述了本发明例的可选实施方式,但是,本发明实施方式并不限于上述实施方式中的具体细节,在本发明实施方式的技术构思范围内,可以对本发明实施方式的技术方案进行多种简单变型,这些简单变型均属于本发明实施方式的保护范围。
32.另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。为了避免不必要的重复,本发明实施方式对各种可能的组合方式不再另行说明。
33.本领域技术人员可以理解实现上述实施方式方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序存储在一个存储介质中,包括若干指令用以使得一个(可以是单片机,芯片等)或处理器(processor)执行本技术各个实施方式所述方法的全部或部分步骤。而前述的存储介质包括:u盘、移动硬盘、只读存储器(rom,read-only memory)、随机存取存储器(ram,random access memory)、磁碟或者光盘等各种可以存储程序代码的介质。
34.此外,本发明实施方式的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明实施方式的思想,其同样应当视为本发明实施方式所公开的内容。
技术特征:
1.一种电池滞回模型下的soc估计方法,其特征在于,所述估计方法包括:依据待估计的电池构建电池滞回模型;建立所述电池滞回模型的端电压方程;确定电池的soc估计方程;将所述电池滞回模型的电流作为输入量,将所述电池滞回模型的端电压作为输出量,构建所述电池滞回模型的状态方程和观测方程;采用扩展卡尔曼滤波算法确定所述状态方程的过程噪声和观测方程;根据所述过程噪声和所述soc估计方程确定所述电池滞回模型的soc值;根据所述soc值确定所述电池滞回模型的观测噪声;根据所述观测噪声和所述观测方程确定所述电池滞回模型的端电压。2.根据权利要求1所述的估计方法,其特征在于,构建的所述电池滞回模型包括:第一电阻,所述第一电阻的一端连接至电源的正极;第二电阻,所述第二电阻的一端连接至所述第一电阻的另一端;第三电阻,所述第三电阻的一端连接至所述第二电阻的另一端,所述第三电阻的另一端作为所述电池滞回模型的一个输出端;第一电容,所述第一电容的一端与所述第三电阻的一端连接,所述第一电容的另一端与所述第三电阻的另一端连接;电源,所述电源的负极作为所述电池滞回模型的另一个输出端。3.根据权利要求2所述的估计方法,其特征在于,建立所述电池滞回模型的端电压方程,包括:根据公式(1)确定所述端电压方程,,(1)其中,为第次计算时的端电压,为第次计算时的放电开路电压,为第次计算时所述第一电阻两端的电压,为第次计算时所述第一电容和所述第三电阻并联支路两端的电压,为所述第二电阻的阻值,为第次计算时采用扩展卡尔曼滤波算法估计的soc电路中的电流。4.根据权利要求1所述的估计方法,其特征在于,确定电池的soc估计方程,包括:根据公式(2)和公式(3)确定所述soc估计方程,,(2)其中,为电池soc值,为初始soc值,为电池的额定容量,为soc电路中的电流,为采样时间;,(3)其中,为第次计算时的电池soc值,为第次计算时的电池soc值,为电池的额定容量,为第次计算时采用扩展卡尔曼滤波算法估计的soc电路中的电流,为采样周期。
5.根据权利要求2所述的估计方法,其特征在于,将所述电池滞回模型的电流作为输入量,将所述电池滞回模型的端电压作为输出量,构建所述电池滞回模型的状态方程和观测方程,包括:根据公式(4)确定所述状态方程,,(4)其中,、为系数矩阵,为第次计算时均值为0的过程噪声,为第次计算时实际测量的soc电路中的电流,为第次计算时实际测量的soc电路中的电流,为第次计算时采用扩展卡尔曼滤波算法估计的soc电路中的电流;根据公式(5)确定所述观测方程,,(5)其中,、为系数矩阵,为第次计算时均值为0的测量噪声,为第次计算时实际测量的端电压,为第次计算时实际测量的soc电路中的电流,为第次计算时采用扩展卡尔曼滤波算法估计的soc电路中的电流。6.根据权利要求5所述的估计方法,其特征在于,所述估计方法还包括:根据公式(6)至公式(9)修正所述状态方程和观测方程,,(6)其中,为系数矩阵,为采样周期,为所述第三电阻的阻值,为所述第一电容的电容值;,(7)其中,为系数矩阵,为采样周期,为所述第三电阻的阻值,为所述第一电容的电容值,为电池的额定容量;,(8)其中,为系数矩阵,为所述第一电阻两端的电压,为放电开路电压,为电池soc值;,(9)其中,为系数矩阵,为电池内阻。7.根据权利要求5所述的估计方法,其特征在于,采用扩展卡尔曼滤波算法确定所述状态方程的过程噪声和观测方程,包括:根据公式(10)和(11)确定所述过程噪声,,(10)
其中,为第次计算,为第次计算,为第次计算时系统过程噪声的协方差矩阵,为随机变数的期望值,为第次计算时均值为0的过程噪声,为第次计算时均值为0的过程噪声;,(11)其中,为预设的常数,为第次计算时系统过程噪声的协方差矩阵,为第次计算时系统过程噪声的协方差矩阵,为采用扩展卡尔曼滤波算法估计的电池端电压值与实际测量的端电压之间的相对残值。8.根据权利要求5所述的估计方法,其特征在于,根据所述soc值确定所述电池滞回模型的观测噪声,包括:判断所述soc值是否大于或等于预设的第一soc阈值;在判断所述soc值大于或等于预设的第一soc阈值的情况下,根据公式(12)和(13)修正所述观测噪声,,(12)其中,为第次计算,为第次计算,为第次计算时系统过程噪声的协方差矩阵,为随机变数的期望值,为第次计算时均值为0的观测噪声,为第次计算时均值为0的观测噪声;,(13)其中,为第次计算时系统观测噪声的协方差矩阵,是预设的常数,为电池内阻,为第一soc阈值,为电池soc值;在判断所述soc值小于预设的第二soc阈值的情况下,根据公式(12)和(14)修正所述观测噪声,其中,所述第二soc阈值小于所述第一soc阈值,,(14)其中,为第次计算时系统观测噪声的协方差矩阵,是预设的常数,为电池内阻,为第二soc阈值,为电池soc值。9.一种电池滞回模型下的soc估计系统,其特征在于,所述估计系统包括处理器,所述处理器被配置成执行如权利要求1至8任一所述的估计方法。
技术总结
本发明实施例提供了一种电池滞回模型下的SOC估计方法及系统,属于电池检测技术领域。所述估计方法包括:依据待估计的电池构建电池滞回模型;建立所述电池滞回模型的端电压方程;确定电池的SOC估计方程;将所述电池滞回模型的电流作为输入量,将所述电池滞回模型的端电压作为输出量,构建所述电池滞回模型的状态方程和观测方程;采用扩展卡尔曼滤波算法确定所述状态方程的过程噪声和观测方程;根据所述过程噪声和所述SOC估计方程确定所述电池滞回模型的SOC值;根据所述SOC值确定所述电池滞回模型的观测噪声;根据所述观测噪声和所述观测方程确定所述电池滞回模型的端电压。本发明动态修正了扩展卡尔曼滤波算法中的协方差矩阵,提高了SOC的估计精度。提高了SOC的估计精度。提高了SOC的估计精度。
技术研发人员:曾国建 吉祥 徐磊磊 孟媛媛
受保护的技术使用者:安徽锐能科技有限公司
技术研发日:2023.06.29
技术公布日:2023/8/1
版权声明
本文仅代表作者观点,不代表航家之家立场。
本文系作者授权航家号发表,未经原创作者书面授权,任何单位或个人不得引用、复制、转载、摘编、链接或以其他任何方式复制发表。任何单位或个人在获得书面授权使用航空之家内容时,须注明作者及来源 “航空之家”。如非法使用航空之家的部分或全部内容的,航空之家将依法追究其法律责任。(航空之家官方QQ:2926969996)
航空之家 https://www.aerohome.com.cn/
飞机超市 https://mall.aerohome.com.cn/
航空资讯 https://news.aerohome.com.cn/