一种低温烧结高介旋磁铁氧体材料及其制备方法与流程
未命名
08-02
阅读:200
评论:0

1.本发明涉及电子材料技术领域,特别涉及一种低温烧结高介旋磁铁氧体材料及其制备方法。
背景技术:
2.以环行器、隔离器为代表的微波旋磁铁氧体器件在现代无线通信系统中发挥着非常重要的作用。近年来,随着国防及民用无线通信技术的快速发展,小型化、宽频带和多功能的发展趋势在各种通信电子产品中体现得越来越明显,因此就需要其中大量采用的微波旋磁器件也必须向小型化和集成化方向不断发展。由于电磁波在介质中传播的波长与介电常数的平方根成反比,因而提高旋磁铁氧体材料的介电常数首先就成为了实现微波铁氧体器件小型化的重要手段。
3.ltcc(低温共烧陶瓷)技术可以实现无源电子元器件的三维立体结构设计和封装,不仅更有利于实现电子元器件的小型化和集成化发展,而且也为电子元器件的创新结构设计提供了新的途径。虽然目前ltcc技术在很多无源电子元器件中都获得了广泛的应用,但在旋磁器件中却几乎未有涉及,这主要是因为常规旋磁yig铁氧体材料的烧结温度太高,而ltcc技术采用银作为共烧电极材料,如果要与ltcc工艺兼容,旋磁材料必须要降低到900℃或以下烧结致密。当前市售的低线宽旋磁yig铁氧体材料一般介电常数仅为13~15,且烧结温度高达1300~1450℃。因此,要同时兼顾高介电常数、低温烧结以及低铁磁共振线宽的目标要求有很大的难度,需要在材料配方、工艺方面进行综合创新调整才行。
4.在高介旋磁yig铁氧体材料研发方面,美国transtech公司最早于2016年申报的美国发明专利(申请号为us13484018)中提出采用适量bi替代y的方式,可以有效提升旋磁yig材料的介电常数,但其报道的高介旋磁yig铁磁共振线宽还比较高(超过50oe),且未实现900℃或以下的低温烧结。深圳顺络电子股份有限公司2018年申请的中国发明(公布号为cn111285673a)专利中采用bi、ca、zr、al和mn等离子共替代的方式来提升材料的介电常数,但同样材料的铁磁共振线宽也较大(超过45oe),同时材料也未实现低温烧结。2021年横店集团东磁股份有限公司也申请了中国发明专利(公布号为cn113896521a),其采取了bi、gd、ca、nb、v等10种元素共替代的方式,实现了一款铁磁共振线宽约20oe,介电常数25~28的低线宽高介旋磁铁氧体材料,但该材料也仅较好的兼顾了高介和低线宽,但材料体系未实现低温烧结。综合目前所有的相关研究报道可以发现,对于提高旋磁yig材料的介电常数方面国内外已有一些研究报道,但进一步的如何将高介旋磁材料实现低温烧结,从而能与ltcc技术相结合,目前都还未有任何研究报道。
技术实现要素:
5.为了克服上述现有技术的缺陷,本发明所要解决的技术问题是提供一种兼具低温烧结、高介电常数以及低铁磁共振线宽特性的旋磁铁氧体材料及其制备方法。
6.为了解决上述技术问题,本发明采用的技术方案为:一种低温烧结高介旋磁铁氧
体材料,分子式为bi
1.45
ti
0.1y1.55-2x-y
ca
2x+y v
x
zr
y-0.1
fe
5-y-xo12
,其中x为0.6~0.65,y为0.25~0.35,1.55-2x-y≥0。
7.本发明采用的另一技术方案为:一种上述低温烧结高介旋磁铁氧体材料的制备方法,包括以下步骤:
8.s1:以bi2o3、y2o3、tio2、caco3、v2o5、zro2和fe2o3为初始原料,按照旋磁铁氧体材料的分子式依次进行配料、混料、球磨、烘干和预烧,得到预烧料;
9.s2:将预烧料进行粗粉粹后,加入bbsz(bi2o
3-h3bo
3-sio
2-zno)玻璃和moo3进行再次球磨后烘干,得到再次烘干料;
10.s3:将再次烘干料依次进行造粒、压制成型和烧结,得到旋磁铁氧体材料。
11.本发明的有益效果在于:本发明提供了一种4πms约780~830gs,介电常数约26.5~27.5,铁磁共振线宽≤25oe的高介低温烧结旋磁材料。该材料很好的兼顾了适宜的饱和磁化强度、高介电常数、较低的铁磁共振线宽以及900℃低温烧结的综合目标要求,有望很好的推动ltcc技术与旋磁器件的结合发展,在新型的小型集成化ltcc旋磁器件中获得广泛应用。
附图说明
12.图1所示为本发明具体实施方式中低温烧结高介旋磁铁氧体材料的制备方法的工艺流程图。
具体实施方式
13.为详细说明本发明的技术内容、所实现目的及效果,以下结合实施方式并配合附图予以说明。
14.本发明最关键的构思在于:高介旋磁铁氧体材料,分子式为bi
1.45
ti
0.1y1.55-2x-y
ca
2x+y v
x
zr
y-0.1
fe
5-y-xo12
,不仅能实现900℃低温烧结,而且可与ltcc工艺的银电极实现很好的共烧兼容。
15.本发明的一种低温烧结高介旋磁铁氧体材料,分子式为bi
1.45
ti
0.1y1.55-2x-y
ca
2x+y v
x
zr
y-0.1
fe
5-y-xo12
,其中x为0.6~0.65,y为0.25~0.35,1.55-2x-y≥0。
16.从上述描述可知,本发明的有益效果在于:本发明的低温烧结高介旋磁铁氧体材料最终可达性能为4πms约780~830gs,介电常数约26.5~27.5,铁磁共振线宽≤25oe,不仅能实现900℃低温烧结,而且可与ltcc工艺的银电极实现很好的共烧兼容。
17.本发明的配方先采用ca、v离子的共替代来先获得需要的4πms,再通过适宜bi离子的替代提升介电常数,最后通过ca、ti离子的共替代来进一步提升介电常数,具有以下优势:
18.(1)将bi离子在旋磁铁氧体中的替代量控制在1.45,这样可以最大程度的兼顾材料高介电常数和低铁磁共振线宽的综合要求,同时材料体系的烧结温度也不太高,有利于后面进一步降低烧结温度至900℃。
19.(2)严格控制了采用0.1mol的ti离子进行替代,既有助于提升材料体系的介电常数,又可以控制材料铁磁共振线宽不会太高。ti离子与ca离子组合替代可满足价态平衡。
20.(3)采用了ca、v和zr离子共替代的方式,一方面可以通过适宜的替代量将材料体
系的4πms调控在780~830gs左右,从而满足低场旋磁器件设计的需要;另一方面是通过大剂量v离子替代进一步降低材料体系的烧结温度,以更有利于实现材料体系的低温烧结,适宜的bi和v离子的替代不仅提高了介电常数,调整了4πms值,而且也使得材料体系的烧结温度尽量降低;此外,适量的ca、zr离子替代还有利于降低材料体系铁磁共振线宽。
21.请参照图1所示,本发明采用的另一技术方案为:一种上述的低温烧结高介旋磁铁氧体材料的制备方法,包括以下步骤:
22.s1:以bi2o3、y2o3、tio2、caco3、v2o5、zro2和fe2o3为初始原料,按照旋磁铁氧体材料的分子式依次进行配料、混料、球磨、烘干和预烧,得到预烧料;
23.s2:将预烧料进行粗粉粹后,加入bbsz玻璃和moo3进行再次球磨后烘干,得到再次烘干料;
24.s3:将再次烘干料依次进行造粒、压制成型和烧结,得到旋磁铁氧体材料。
25.从上述描述可知,本发明的制备方法首先将各原料按组分配料后经一次球磨烘干后预烧,在二次球磨时掺杂预烧料bbsz玻璃和moo3,经二次球磨烘干后,加入pva溶液造粒成型,最终烧结即可实现充分致密化得到兼具低温烧结、高介电常数以及低铁磁共振线宽特性的旋磁铁氧体材料。该材料经与ag粉共烧验证,无任何新相产生,其不仅能实现900℃低温烧结,而且可与ltcc工艺的银电极实现很好的共烧兼容,可以用于ltcc旋磁器件的研发应用。
26.在二次球磨时再掺杂适量的bbsz玻璃和moo3,一方面可以将材料体系的烧结温度通过进一步液相助熔烧结,降低至900℃实现与ltcc工艺兼容的低温烧结并提升致密度,其次还可以通过优化铁氧体材料的微观形貌以提升材料性能,利于降低铁磁共振线宽和提升介电常数。
27.进一步的,预烧具体为:将烘干后得到的烘干料过筛后压实打孔,升温至750~850℃并保温6~8h进行预烧,冷却后得到预烧料。
28.从上述描述可知,预烧时通过离子和空位的扩散,完成固相反应和晶粒生长,提高材料性能。
29.进一步的,bbsz玻璃的添加量为预烧料重量的0.2~0.3wt%。
30.从上述描述可知,
31.进一步的,bbsz玻璃与moo3的重量比为2~3:1。
32.从上述描述可知,bbsz玻璃的掺杂量少了,无法让材料在900度低温烧结实现足够的致密化,bbsz玻璃的掺杂量过多则会导致磁性能下降,典型体现为铁磁共振线宽增大。掺杂moo3有助于改善铁氧体微观形貌,让晶粒生长更均匀,晶粒平均尺寸增大。moo
3的
掺杂量过少达不到改善微观形貌的效果,过多容易导致晶粒生长不均匀,反而恶化材料磁性能。
33.从上述描述可知,本发明使用bbsz玻璃+moo3的组合掺杂的掺杂模式,能更有效的将材料体系烧结温度降低至900℃,同时对材料磁性能影响几乎可以忽略不计。
34.进一步的,再次球磨至粉料的平均粒度在1μm以下。
35.从上述描述可知,颗粒越小,比表面积越大,活性便增大有利于降低烧结温度,减少反应时间。
36.进一步的,bbsz玻璃的制备方法为:称取bi2o3、h3bo3、sio2和zno原料,加去离子水球磨混合均匀后烘干,然后升温至950~1050℃下保温1h后倒入去离子水中进行快淬,将快
淬后得到的玻璃渣球磨至粒度2~3um后烘干得到bbsz玻璃。
37.进一步的,造粒时加入占再次烘干料重量8%~12%的pva(聚乙烯醇)溶液。
38.进一步的,烧结时的具体步骤为:以2~3℃/min升温至150~200℃保温1~2h后排水,再以2~3℃/min升温至500~600℃保温2~4h后排胶,最后以2~3℃/min升温至900℃保温4~6h,冷却后完成烧结。
39.从上述描述可知,烧结使得材料内部颗粒见相互作用,排除气孔,提高密度,完成固相反应。
40.请参照图1所示,本发明的实施例一为:一种低温烧结高介旋磁铁氧体材料的制备方法,包括以下步骤:
41.s1:以纯度达99.5%以上的bi2o3、y2o3、tio2、caco3、v2o5、zro2和fe2o3为初始原料,按照旋磁铁氧体材料的分子式bi
1.45
ti
0.1y1.55-2x-y
ca
2x+y v
x
zr
y-0.1
fe
5-y-xo12
进行精确配料,其中x为0.6~0.65,y为0.25~0.35,1.55-2x-y≥0,然后在行星式球磨机中进行混料、球磨6h后烘干。
42.s2、将烘干后得到的烘干料过60目筛后压实打孔,以3℃/min的升温速率升温至800℃并保温6h进行预烧,随炉冷却到室温得到预烧料。
43.s3:将预烧料进行粗粉粹后,加入预烧料重量百分比0.25wt%的bbsz玻璃和0.1wt%moo3进行微量掺杂;然后在行星式球磨机中进行再次球磨6h至粉料的平均粒度在1μm以下后烘干,得到再次烘干料;
44.其中bbsz玻璃的制备方法为:按照摩尔分数为27%bi2o
3-35%h3bo
3-6%sio
2-32%zno的比例称取bi2o3、h3bo3、sio2和zno原料,加去离子水球磨混合均匀后烘干,然后升温至1000℃下保温1h后倒入去离子水中进行快淬,将快淬后得到的玻璃渣球磨至粒度2.5um后烘干得到bbsz玻璃。
45.s4:再次烘干料中加入占其重量10%的pva溶液并压制成型,得生胚。
46.s5:将生胚样品以2℃/min升温至200℃保温2h后排水,再以2℃/min升温至600℃保温3h后排胶,最后以2.5℃/min升温至900℃保温5h,随炉冷却至室温完成烧结,得到旋磁铁氧体材料。
47.表1所示为配方分子式中x和y取不同值时得到的测试结果。
48.表1
49.50.由表1可知,本发明的低温烧结高介旋磁铁氧体材料最终可达性能为4πms约780~830gs,介电常数约26.5~27.5,铁磁共振线宽≤25oe,不仅能实现900℃低温烧结,而且可与ltcc工艺的银电极实现很好的共烧兼容。
51.本发明的实施例二为:一种低温烧结高介旋磁铁氧体材料的制备方法,包括以下步骤:
52.s1:以纯度达99.5%以上的bi2o3、y2o3、tio2、caco3、v2o5、zro2和fe2o3为初始原料,按照旋磁铁氧体材料的分子式bi
1.45
ti
0.1y1.55-2x-y
ca
2x+y v
x
zr
y-0.1
fe
5-y-xo12
进行精确配料,其中x=0.6,y=0.25,然后在行星式球磨机中进行混料、球磨6h后烘干。
53.s2、将烘干后得到的烘干料过60目筛后压实打孔,以3℃/min的升温速率升温至750℃并保温8h进行预烧,随炉冷却到室温得到预烧料。
54.s3:将预烧料进行粗粉粹后,加入预烧料重量百分比0.2wt%的bbsz玻璃和0.1wt%moo3进行微量掺杂;然后在行星式球磨机中进行再次球磨6h至粉料的平均粒度在1μm以下后烘干,得到再次烘干料;
55.其中bbsz玻璃的制备方法为:按照摩尔分数为27%bi2o
3-35%h3bo
3-6%sio
2-32%zno的比例称取bi2o3、h3bo3、sio2和zno原料,加去离子水球磨混合均匀后烘干,然后升温至950℃下保温1h后倒入去离子水中进行快淬,将快淬后得到的玻璃渣球磨至粒度2um后烘干得到bbsz玻璃。
56.s4:再次烘干料中加入占其重量8%的pva溶液并压制成型,得生胚。
57.s5:将生胚样品以2.5℃/min升温至150℃保温1.8h后排水,再以2.5℃/min升温至500℃保温4h后排胶,最后以2℃/min升温至900℃保温4h,随炉冷却至室温完成烧结,得到旋磁铁氧体材料。
58.本发明的实施例三为:一种低温烧结高介旋磁铁氧体材料的制备方法,包括以下步骤:
59.s1:以纯度达99.5%以上的bi2o3、y2o3、tio2、caco3、v2o5、zro2和fe2o3为初始原料,按照旋磁铁氧体材料的分子式bi
1.45
ti
0.1y1.55-2x-y
ca
2x+y v
x
zr
y-0.1
fe
5-y-xo12
进行精确配料,其中xx=0.6,y=0.25,然后在行星式球磨机中进行混料、球磨6h后烘干。
60.s2、将烘干后得到的烘干料过60目筛后压实打孔,以3℃/min的升温速率升温至850℃并保温7h进行预烧,随炉冷却到室温得到预烧料。
61.s3:将预烧料进行粗粉粹后,加入预烧料重量百分比0.3wt%的bbsz玻璃和0.1wt%moo3进行微量掺杂;然后在行星式球磨机中进行再次球磨6h至粉料的平均粒度在1μm以下后烘干,得到再次烘干料;
62.其中bbsz玻璃的制备方法为:按照摩尔分数为27%bi2o
3-35%h3bo
3-6%sio
2-32%zno的比例称取bi2o3、h3bo3、sio2和zno原料,加去离子水球磨混合均匀后烘干,然后升温至1050℃下保温1h后倒入去离子水中进行快淬,将快淬后得到的玻璃渣球磨至粒度3um后烘干得到bbsz玻璃。
63.s4:再次烘干料中加入占其重量12%的pva溶液并压制成型,得生胚。
64.s5:将生胚样品以3℃/min升温至170℃保温1h后排水,再以3℃/min升温至550℃保温2h后排胶,最后以3℃/min升温至900℃保温6h,随炉冷却至室温完成烧结,得到旋磁铁氧体材料。
65.综上所述,本发明提供的本发明的制备方法首先将各原料按组分配料后经一次球磨烘干后预烧,在二次球磨时掺杂预烧料bbsz玻璃和moo3,经二次球磨烘干后,加入pva溶液造粒成型,最终烧结即可实现充分致密化得到兼具低温烧结、高介电常数以及低铁磁共振线宽特性的旋磁铁氧体材料。该材料采用了适宜的bi和v离子的替代提高了介电常数,调整了4πms值,使得材料体系的烧结温度尽量降低,然后在二次球磨时掺杂适量的bbsz玻璃和moo3,将材料体系的烧结温度通过进一步液相助熔烧结,降低至900℃实现与ltcc工艺兼容的低温烧结并提升致密度。该材料经与ag粉共烧验证,无任何新相产生,其不仅能实现900℃低温烧结,而且可与ltcc工艺的银电极实现很好的共烧兼容,可以用于ltcc旋磁器件的研发应用。
66.以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等同变换,或直接或间接运用在相关的技术领域,均同理包括在本发明的专利保护范围内。
技术特征:
1.一种低温烧结高介旋磁铁氧体材料,其特征在于,分子式为bi
1.45
ti
0.1
y
1.55-2x-y
ca
2x+y v
x
zr
y-0.1
fe
5-y-x
o
12
,其中x为0.6~0.65,y为0.25~0.35,1.55-2x-y≥0。2.一种权利要求1所述的低温烧结高介旋磁铁氧体材料的制备方法,其特征在于,包括以下步骤:s1:以bi2o3、y2o3、tio2、caco3、v2o5、zro2和fe2o3为初始原料,按照旋磁铁氧体材料的分子式依次进行配料、混料、球磨、烘干和预烧,得到预烧料;s2:将预烧料进行粗粉粹后,加入bbsz玻璃和moo3进行再次球磨后烘干,得到再次烘干料;s3:将再次烘干料依次进行造粒、压制成型和烧结,得到旋磁铁氧体材料。3.根据权利要求2所述的低温烧结高介旋磁铁氧体材料的制备方法,其特征在于,所述预烧具体为:将烘干后得到的烘干料过筛后压实打孔,升温至750~850℃并保温6~8h进行预烧,冷却后得到预烧料。4.根据权利要求2所述的低温烧结高介旋磁铁氧体材料的制备方法,其特征在于,所述bbsz玻璃的添加量为预烧料重量的0.2~0.3wt%。5.根据权利要求2所述的低温烧结高介旋磁铁氧体材料的制备方法,其特征在于,所述bbsz玻璃与moo3的重量比为2~3:1。6.根据权利要求2所述的低温烧结高介旋磁铁氧体材料的制备方法,其特征在于,所述再次球磨至粉料的平均粒度在1μm以下。7.根据权利要求2所述的低温烧结高介旋磁铁氧体材料的制备方法,其特征在于,所述bbsz玻璃的制备方法为:称取bi2o3、h3bo3、sio2和zno原料,加去离子水球磨混合均匀后烘干,然后升温至950~1050℃下保温1h后倒入去离子水中进行快淬,将快淬后得到的玻璃渣球磨至粒度2~3um后烘干得到bbsz玻璃。8.根据权利要求2所述的低温烧结高介旋磁铁氧体材料的制备方法,其特征在于,所述造粒时加入占再次烘干料重量8%~12%的pva溶液。9.根据权利要求2所述的低温烧结高介旋磁铁氧体材料的制备方法,其特征在于,所述烧结时的具体步骤为:以2~3℃/min升温至150~200℃保温1~2h后排水,再以2~3℃/min升温至500~600℃保温2~4h后排胶,最后以2~3℃/min升温至900℃保温4~6h,冷却后完成烧结。
技术总结
本发明涉及电子材料技术领域,特别涉及一种低温烧结高介旋磁铁氧体材料及其制备方法。该低温烧结高介旋磁铁氧体材料,分子式为Bi
技术研发人员:徐远勇 倪晶 张伟 彭华
受保护的技术使用者:深圳市华扬通信技术有限公司
技术研发日:2023.05.11
技术公布日:2023/8/1
版权声明
本文仅代表作者观点,不代表航家之家立场。
本文系作者授权航家号发表,未经原创作者书面授权,任何单位或个人不得引用、复制、转载、摘编、链接或以其他任何方式复制发表。任何单位或个人在获得书面授权使用航空之家内容时,须注明作者及来源 “航空之家”。如非法使用航空之家的部分或全部内容的,航空之家将依法追究其法律责任。(航空之家官方QQ:2926969996)
航空之家 https://www.aerohome.com.cn/
飞机超市 https://mall.aerohome.com.cn/
航空资讯 https://news.aerohome.com.cn/
上一篇:一种芯片封装结构及封装方法与流程 下一篇:一种新型胶结土及制备工艺的制作方法