一种用于新能源汽车车身地板和电池包盖板的碳纤维复合材料的制作方法
未命名
08-02
阅读:81
评论:0

一种用于新能源汽车车身地板和电池包盖板的碳纤维复合材料
1.本技术要求享有申请日为2022年3月22日、名称为“一种用于新能源汽车底盘结构和电池包托盘的碳纤维复合材料”的专利申请cn202210279264.x的优先权,其全部内容通过引用并入本文中。
技术领域
2.本发明涉及碳纤维材料技术领域,具体涉及一种用于新能源汽车车身地板和电池包盖板的碳纤维复合材料。
背景技术:
3.目前,全球新能源汽车地板都采用以下几种结构类型:钢结构、铝合金结构或者铝镁合金结构。在强度保证的前提下,对整车重量的轻量化的要求不断提高,无法满足市场的需求。以铝合金结构的电池包盖板为例,所有新能源电池包采用铝合金托盘电脑数值控制加工(computer numerical control,简称cnc)。cnc加工和工程塑料注塑成型电池盖结合,电池包盖板不仅重而且不具备保温隔热功能。
4.因此需要对上述结构进行改进,使新能源汽车车身地板和电池包盖板既有高强度轻量化,又具有保温隔热功能。
5.鉴于此,特提出本发明。
技术实现要素:
6.为了克服如上所述的技术问题,而进一步对车身地板和电池包盖板的结构进行改进,需要对该材料的原料和制备工艺进行开发。
7.本发明的第一目的在于提供一种用于新能源汽车车身地板和电池包盖板的碳纤维复合材料,其采用碳纤维复合发泡高阻燃成型,具有三明治结构,能够实现对电池包的整体保温隔热和减重的多重效果。
8.本发明的第二目的在于提供所述碳纤维复合材料的制备方法。
9.本发明的第三目的是提供上述碳纤维复合材料在新能源汽车车身地板和电池包盖板中的应用。
10.为实现上述目的,本发明的技术方案如下:
11.本发明涉及一种用于新能源汽车车身地板和电池包盖板的碳纤维复合材料,其包括由碳纤维和树脂材料制备得到的壳层,以及由改性树脂材料制备得到的内芯,所述壳层形成对所述内芯的包覆;所述树脂材料为改性树脂材料。
12.优选地,所述壳层的厚度为0.5~2mm,所述内芯的厚度为20~100mm。
13.优选地,所述改性树脂材料选自聚对苯二甲酸类塑料(polyethylene terephthalate,简称pet)、聚苯醚类塑料(polyphenylene oxide,简称ppo)、聚酰胺类塑料(polyamide,简称pa)、聚醚醚酮(polyether-ether-ketone,简称peek)中的至少一种。
14.本发明还涉及所述碳纤维复合材料的制备方法,包括以下步骤:
15.(1)将碳纤维和第一树脂材料制备得到热塑性碳纤维单向带;
16.优选地,按重量份数计,所述碳纤维为50~65份,第一树脂材料为35~50份。
17.优选地,所述第一树脂材料为pet或ppo。上述树脂材料与下面的内芯材料优选为同一材料,这一步骤采用连续复合压机生产线进行。
18.(2)将第二树脂材料依次进行改性、切粒、二氧化碳超临界物理发泡和珠粒模压成型,得到所述碳纤维复合材料的内芯。
19.优选地,所述第二树脂材料为pet、ppo或pa。
20.优选地,所述改性为向所述第二树脂材料中加入扩链剂和/或增韧剂,所述扩链剂和/或增韧剂的加入量为所述第二树脂材料的3~10质量%。
21.优选地,经过二氧化碳超临界物理发泡后,所述第二树脂材料成为珠粒,通过全自动模压机成型任意型状的结构件,得到所述碳纤维复合材料的内芯;
22.优选地,向所述第二树脂材料加工的珠粒中加入epet和/或eppo珠粒,通过全自动模压机成型任意型状的结构件,得到所述碳纤维复合材料的内芯;所述第二树脂材料与所述epet和/或eppo珠粒的质量比为(3~5):(3~5)。
23.(3)采用单向带贴合工艺,按照同一方向,将步骤(1)得到的所述热塑性碳纤维单向带贴合在步骤(2)得到的所述内芯表面,然后对贴合单向带的内芯进行激光热固实现一次成型,得到第一预制品;
24.(4)改变贴合方向,将所述热塑性碳纤维单向带再次贴合在所述第一预制品表面,然后对贴合单向带的第一预制品进行激光热固实现一次成型,得到第二预制品;
25.优选地,步骤(3)和(4)中,所述单向带贴合工艺为3d编织绕线工艺,所述单向带在所述内芯和所述第一预制品表面的复合层数为单层。
26.(5)重复步骤(4)2~5次,得到单向带多角度贴合激光热固的产品,即本发明所述的用于新能源汽车车身地板和电池包盖板的碳纤维复合材料,达到高强度轻量化复合材料零部件的目的。
27.优选地,步骤(4)和(5)中,按照与水平方向呈0
°
、45
°
、90
°
夹角的顺序改变碳纤维单向带的贴合方向。
28.步骤(5)完成后,还需要将内芯内部的金属结构件和碳纤维的预留连接孔位置加工出来,达到一体化复合材料和其他金属零部件连接的目的。
29.本发明还涉及所述碳纤维复合材料在制造新能源汽车车身地板和电池包盖板中的应用。
30.本发明的有益效果:
31.本发明提供了一种用于新能源汽车车身地板和电池包盖板的碳纤维复合材料,其采用碳纤维复合发泡高阻燃成型,具有三明治结构,能够实现对电池包的整体保温隔热和减重的多重效果。具体的,该复合材料能够替代金属车身结构地板实现轻量化高强度的功能,并且对电池包具有整体保温隔热功能,又同时对电池包盖板减重,可以大幅度减少生产工艺制程。
附图说明
32.图1为实施例1的碳纤维复合材料截面图。
33.其中,1-热塑性碳纤维单向带;2-内芯。
34.图2为制备热塑性碳纤维单向带的连续复合压机生产线的示意图。
35.其中,2-1放纱架;2-2-挤出机;2-3展纱装置;2-4浸渍模头;2-5冷却定型辊;2-6牵引辊;2-7收卷装置。
36.图3为实施例1碳纤维单向带的贴合方向的示意图。
具体实施方式
37.为使本发明的目的、技术方案和优点更加清楚,下面将对本发明的技术方案进行详细的描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所得到的所有其它实施方式,都属于本发明所保护的范围。
38.本发明涉及一种用于新能源汽车车身地板和电池包盖板的碳纤维复合材料,如图1所示,其包括由碳纤维和改性树脂材料制备得到的壳层,即热塑性碳纤维单向带1,以及树脂材料制备得到的内芯2,所述壳层形成对所述内芯2的包覆。
39.在本发明的一个实施例中,所述壳层的厚度为0.5~2mm,所述内芯的厚度为20~100mm。
40.在本发明的一个实施例中,所述改性树脂材料选自pet、ppo、pa中的至少一种。
41.本发明还涉及所述碳纤维复合材料的制备方法,包括以下步骤:
42.(1)将碳纤维和第一树脂材料制备得到热塑性碳纤维单向带;
43.在本发明的一个实施例中,按重量份数计,所述碳纤维为50~65份,第一树脂材料为35~50份。
44.在本发明的一个实施例中,所述第一树脂材料为pet或ppo。上述树脂材料与下面的内芯材料优选为同一材料,这样有利于后续的热成型。这一步骤采用连续复合压机生产线进行。
45.如图2所示,这一过程通过本领域公知的连续复合压机生产线进行,该生产线包括依次设置的放纱架2-1、挤出机2-2、展纱装置2-3、浸渍模头2-4、冷却定型辊2-5、牵引辊2-6和收卷装置2-7。具体工艺步骤如下:
46.1、将碳纤维置于放纱架2-1上,由放纱架2-1传输到展纱装置2-3,将多条碳纤维平铺成平面。
47.2、第一树脂材料置于挤出机2-2中,在加热条件下树脂融化(加热温度为树脂熔点,通常在150-250℃之间)。浸渍模头2-4中有多个凹槽,所述凹槽宽度略大于碳纤维宽度,融化后的树脂进入浸渍模头2-4中的凹槽内。
48.3、由展纱装置2-3将碳纤维送入浸渍模头2-4,处于同一平面的多条碳纤维进入浸渍模头2-4的凹槽内,液态的树脂对碳纤维进行浸渍。
49.4、将浸渍树脂的碳纤维从浸渍模头2-4输出,进入冷却定型辊2-5。碳纤维表面的树脂冷却,对碳纤维形成包覆层。多条碳纤维经冷却定型形成片材。
50.5、上述片材从冷却定型辊2-5输出后,由牵引辊2-6导出,裁剪后由收卷装置2-7进
行收卷。
51.(2)将第二树脂材料依次进行改性、切粒、二氧化碳超临界物理发泡和珠粒模压成型,得到所述碳纤维复合材料的内芯。
52.在本发明的一个实施例中,所述第二树脂材料为pet、ppo或pa。
53.在本发明的一个实施例中,所述改性为向所述第二树脂材料中加入扩链剂和/或增韧剂,所述扩链剂和/或增韧剂的加入量为所述第二树脂材料的3~10质量%。
54.在本发明的一个实施例中,经过二氧化碳超临界物理发泡后,所述第二树脂材料成为珠粒,通过全自动模压机成型任意型状的结构件,得到所述碳纤维复合材料的内芯。模压成型可以得到各种需要的结构形状,比如车底地板或电池包盖板,以实现部件轻量化。成型过程中同时在发泡珠粒中间层嵌入高强度铝合金,或者高强度结构钢的连接件。
55.在本发明的一个实施例中,向所述第二树脂材料加工的珠粒中加入epet和/或eppo珠粒,通过全自动模压机成型任意型状的结构件,得到所述碳纤维复合材料的内芯。模压成型可以得到各种需要的结构形状,比如车底地板或电池包盖板,以实现部件轻量化。成型过程中同时嵌入件高强度铝合金连接法兰。
56.在本发明的一个实施例中,所述第二树脂材料与所述epet和/或eppo珠粒的质量比为(3~5):(3~5)。
57.(3)采用单向带贴合工艺,按照同一方向,将步骤(1)得到的所述热塑性碳纤维单向带贴合在步骤(2)得到的所述内芯表面,然后对贴合单向带的内芯进行激光热固实现一次成型,得到第一预制品;
58.(4)改变贴合方向,将所述热塑性碳纤维单向带再次贴合在所述第一预制品表面,然后对贴合单向带的第一预制品进行激光热固实现一次成型,得到第二预制品;
59.在本发明的一个实施例中,步骤(3)和(4)中,所述单向带贴合工艺为3d编织绕线工艺,所述单向带在所述内芯和所述第一预制品表面的复合层数为单层。
60.(5)重复步骤(4)2~5次,得到单向带多角度贴合激光热固的产品,即本发明所述的用于新能源汽车车身地板和电池包盖板的碳纤维复合材料,达到高强度轻量化复合材料零部件的目的。
61.在本发明的一个实施例中,步骤(4)和(5)中,按照与水平方向呈0
°
、45
°
、90
°
夹角的顺序改变碳纤维单向带的贴合方向。如图3所示,假设第一层单向带的贴合方向与水平面平行,即为纬线方向,第二层单向带的贴合方向与纬线方向呈45
°
夹角,第三层单向带的贴合方向与纬线方向呈90
°
夹角。这种贴合方式可以提高单向带的铺设强度。
62.步骤(5)完成后,还需要将内芯内部的金属结构件和碳纤维的预留连接孔位置加工出来,达到一体化复合材料和其他金属零部件连接的目的。
63.本发明实施例还涉及所述碳纤维复合材料在制造新能源汽车车身地板和电池包盖板中的应用。
64.对比例1
65.一种用于新能源汽车车身地板和电池包盖板的碳纤维复合材料,其制备方法包括以下步骤:
66.(1)采用连续复合压机生产线,将碳纤维和第一树脂材料pet制备得到热塑性碳纤维单向带,其中碳纤维为65份,第一树脂材料为35份。
67.(2)向第二树脂材料pet中加入扩链剂进行改性,所述扩链剂为1,4-丁二醇(bdo),加入量为所述第二树脂材料的5质量%。然后进行切粒和二氧化碳超临界物理发泡得到珠粒。将珠粒通过全自动模压机成型任意型状的结构件,得到所述碳纤维复合材料的内芯。模压成型可以得到各种需要的结构形状,比如车底或电池托盘盖,以实现部件轻量化。成型过程中同时嵌入件高强度铝合金连接法兰。或者,向第二树脂材料pet中加入扩链剂进行改性,所述扩链剂为1,4-丁二醇(bdo),加入量为所述第二树脂材料的5质量%。然后进行切粒和二氧化碳超临界物理发泡得到珠粒。向珠粒中加入epet珠粒,所述第二树脂材料与所述epet珠粒的质量比为5:3,通过全自动模压机成型任意型状的结构件,得到所述碳纤维复合材料的内芯。模压成型可以得到各种需要的结构形状,比如车底或电池托盘盖,以实现部件轻量化。成型过程中同时嵌入件高强度铝合金连接法兰。
68.(3)采用3d编织绕线工艺,将步骤(1)得到的所述热塑性碳纤维单向带复合在步骤(2)得到的所述内芯表面,复合层数为单层,然后进行激光热固实现一次成型。
69.对对比例1制备得到的碳纤维复合材料进行性能测试,结果如表1所示:
70.表1
[0071][0072][0073]
实施例1
[0074]
一种用于新能源汽车车身地板和电池包盖板的碳纤维复合材料,其制备方法的步骤(1)和(2)同对比例1,步骤(3)及之后的制备过程如下:
[0075]
(3)采用单向带贴合工艺,按照同一方向,将步骤(1)得到的所述热塑性碳纤维单向带贴合在步骤(2)得到的所述内芯表面,贴合方向为水平方向,贴合层数为单层,然后对贴合单向带的内芯进行激光热固实现一次成型,得到第一预制品;
[0076]
(4)改变贴合方向,将所述碳纤维单向带再次贴合在所述第一预制品表面,贴合方向与水平方向呈45
°
夹角,贴合层数为单层,然后对贴合单向带的第一预制品进行激光热固实现一次成型,得到第二预制品;
[0077]
(5)改变贴合方向,将所述碳纤维单向带再次贴合在所述第二预制品表面,贴合方向与水平方向呈90
°
夹角,贴合层数为单层,然后对贴合单向带的第二预制品进行激光热固实现一次成型,得到成品。
[0078]
对比例2
[0079]
一种用于新能源汽车车身地板和电池包盖板的碳纤维复合材料,其制备方法的步骤(1)至(2)同实施例1,步骤(3)及之后的制备过程如下:
[0080]
(3)采用单向带贴合工艺,按照同一方向,将步骤(1)得到的所述碳纤维单向带贴合在步骤(2)得到的所述内芯表面,贴合方向为水平方向,贴合层数为单层,然后对贴合单向带的内芯进行激光热固实现一次成型,得到第一预制品;
[0081]
(4)将所述碳纤维单向带再次贴合在所述第一预制品表面,贴合方向为水平方向,贴合层数为单层,然后对贴合单向带的第一预制品进行激光热固实现一次成型,得到第二预制品;
[0082]
(5)将所述碳纤维单向带再次贴合在所述第二预制品表面,贴合方向为水平方向,贴合层数为单层,然后对贴合单向带的第二预制品进行激光热固实现一次成型,得到成品。
[0083]
对实施例1和对比例2制备得到的碳纤维复合材料进行性能测试,结果如表2所示:
[0084]
表2
[0085] 测试内容方向(
°
)单位测试结果实施例1夏比冲击垂直于表面n/a230.00对比例1夏比冲击垂直于表面n/a140.00对比例2夏比冲击垂直于表面n/a170.00
[0086]
从表2可知,对比例1在发泡内芯表面贴合单层碳纤维单向带,其强度达到了较好的结果。对比例2进一步在表面贴合单向带,强度继续增加。在贴合层数不变的前提下,实施例1改变了不同层单向带的贴合方向,对强度的提升尤为明显。
[0087]
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。
技术特征:
1.一种用于新能源汽车车身地板和电池包盖板的碳纤维复合材料,其特征在于,所述复合材料包括由碳纤维和树脂材料制备得到的壳层,以及由树脂材料制备得到的内芯,所述壳层形成对所述内芯的包覆;所述树脂材料为改性树脂材料。2.根据权利要求1所述的复合材料,其特征在于,所述壳层的厚度为0.5~2mm,所述内芯的厚度为20~100mm。3.根据权利要求1所述的复合材料,其特征在于,所述改性树脂材料选自pet、ppo、pa、peek中的至少一种。4.根据权利要求1至3任一项所述碳纤维复合材料的制备方法,其特征在于,包括以下步骤:(1)将碳纤维和第一树脂材料制备得到热塑性碳纤维单向带;(2)将第二树脂材料依次进行改性、切粒、二氧化碳超临界物理发泡和珠粒模压成型,得到所述碳纤维复合材料的内芯;(3)采用单向带贴合工艺,按照同一方向,将步骤(1)得到的所述热塑性碳纤维单向带贴合在步骤(2)得到的所述内芯表面,然后对贴合单向带的内芯进行激光热固实现一次成型,得到第一预制品;(4)改变贴合方向,将所述热塑性碳纤维单向带再次贴合在所述第一预制品表面,然后对贴合单向带的第一预制品进行激光热固实现一次成型,得到第二预制品;(5)重复步骤(4)2~5次,得到所述用于新能源汽车车身地板和电池包盖板的碳纤维复合材料。5.根据权利要求4所述的方法,其特征在于,步骤(1)中,按重量份数计,所述碳纤维为50~65份,第一树脂材料为35~50份。6.根据权利要求4所述的方法,其特征在于,步骤(1)中,所述第一树脂材料为pet或ppo,所述第一树脂材料与下面的内芯材料优选为同一材料,步骤(1)采用连续复合压机生产线进行。7.根据权利要求4所述的方法,其特征在于,步骤(2)中,所述第二树脂材料为pet、ppo或pa。8.根据权利要求4所述的方法,其特征在于,步骤(2)中,改性为向所述第二树脂材料中加入扩链剂和/或增韧剂,所述扩链剂和/或增韧剂的加入量为所述第二树脂材料的3~10质量%;和/或,经过二氧化碳超临界物理发泡后,所述第二树脂材料成为珠粒,通过全自动模压机成型任意型状的结构件,得到所述碳纤维复合材料的内芯;或者,向所述第二树脂材料加工的珠粒中加入epet和/或eppo珠粒,通过全自动模压机成型任意型状的结构件,得到所述碳纤维复合材料的内芯;所述第二树脂材料与epet和/或eppo珠粒的质量比为(3~5):(3~5)。9.根据权利要求4所述的方法,其特征在于,步骤(3)和(4)中,所述单向带贴合工艺为3d编织绕线工艺,所述单向带在所述内芯和所述第一预制品表面的复合层数为单层;和/或,步骤(4)和(5)中,按照与水平方向呈0
°
、45
°
、90
°
夹角的顺序改变碳纤维单向带的贴合方向。10.权利要求1至3任一项或权利要求4至9任一项所述方法制备得到的碳纤维复合材料
在制造新能源汽车车身地板和电池包盖板中的应用。
技术总结
本发明提供了一种用于新能源汽车车身地板和电池包盖板的碳纤维复合材料,其采用碳纤维复合发泡高阻燃成型,具有三明治结构,能够实现对电池包的整体保温隔热和减重的多重效果。具体的,该复合材料能够替代金属车身结构地板实现轻量化高强度的功能,并且对电池包具有整体保温隔热功能,又同时对电池包盖板减重,可以大幅度减少生产工艺制程。可以大幅度减少生产工艺制程。可以大幅度减少生产工艺制程。
技术研发人员:陆炜
受保护的技术使用者:浙江阿莱西澳智能装备科技有限公司
技术研发日:2023.03.14
技术公布日:2023/7/31
版权声明
本文仅代表作者观点,不代表航家之家立场。
本文系作者授权航家号发表,未经原创作者书面授权,任何单位或个人不得引用、复制、转载、摘编、链接或以其他任何方式复制发表。任何单位或个人在获得书面授权使用航空之家内容时,须注明作者及来源 “航空之家”。如非法使用航空之家的部分或全部内容的,航空之家将依法追究其法律责任。(航空之家官方QQ:2926969996)
航空之家 https://www.aerohome.com.cn/
飞机超市 https://mall.aerohome.com.cn/
航空资讯 https://news.aerohome.com.cn/