基于磁介电材料优化的5G天线制作方法、器件及装置
未命名
10-25
阅读:112
评论:0
基于磁介电材料优化的5g天线制作方法、器件及装置
技术领域
1.本发明涉及微波器件制作领域,更为具体的,涉及一种基于磁介电材料优化的5g天线制作方法、器件及装置。
背景技术:
2.随着应用于电子消费产品、物联网、智能驾驶、可植入电子设备的无线通信系统的飞速发展,下一代无线通信系统对天线高频化、宽带化、小型化、轻量化有着迫切需求。由于天线的尺寸主要由天线基材内电磁波波长决定,因此高介电常数材料在天线小型化领域得到了广泛的应用。然而,高介电材料存在两个明显的问题:一是电场能量集中和表面波激发,导致天线效率降低和带宽变窄;二是高介电材料特征阻抗与环境特征阻抗差异大,给阻抗匹配带来困难。
3.微波磁介电材料是指相对磁导率和相对介电常数在微波频段数都大于1的材料。由于介电常数和磁导率对减小电磁波波长有相似的作用,因此微波磁介电材料在天线小型化领域有巨大潜在应用价值。
4.六角铁氧体是微波磁介电材料的一种。目前,tauber等人发现了一种新型六角铁氧体,化学式为ba5me2ti3fe
12o31
(me = mg、mn、co、ni、cu、zn等)。这种特殊的六角铁氧体晶胞包含两个单元的化学式,其中18层密堆积的位置被62个o
2-和10个ba
2+
占据,而其余的金属阳离子分布于o
2-之间的空位,因此也被叫做18h六角铁氧体。在图1中,如图1(a)所示,其晶体结构可以看作是在y型六角铁氧体晶胞结构的t块中间插入含有三个氧层的六角钛酸钡块。绝大部分已知的18h六角铁氧体(cu 18h除外)都表现出平面磁晶各向异性。这意味着18h六角铁氧体是潜在的无钴微波材料,可以用作大多数微波六角铁氧体无毒且低成本的替代品。
5.但是,直到目前对18h六角铁氧体的研究很少,且大多停留在晶体结构和静态磁性质,几乎没有对其微波磁介电性能的研究。面向器件应用,更是尚无相关技术方案。
技术实现要素:
6.本发明的目的在于克服现有技术的不足,提供一种基于磁介电材料优化的5g天线制作方法、器件及装置,改进了天线基材,提供了一种制作小型化5g天线和其他微波器件的新方法。
7.本发明的目的是通过以下方案实现的:一种基于磁介电材料优化的5g天线制作方法,包括以下步骤:通过金属离子取代和制备步骤优化,制备得到适用于sub-6 ghz波段的18h六角铁氧体;所述金属离子包括mn
2+
、zn
2+
,且当所述金属离子为mn
2+
、zn
2+
时,所述适用于sub-6 ghz波段的18h六角铁氧体表示为mg-zn 18h六角铁氧体;通过改变mg与zn的原子比,用于使mg-zn18h六角铁氧体的最佳工作频段覆盖整个s波段;所述制备步骤优化,用于调控晶粒尺寸分布和气孔分布;以及用于调控晶粒取向
度和修复晶格缺陷;以及用于调控金属离子占位分布;将采用制备步骤优化后得到的mg-zn 18h六角铁氧体,作为5g天线基材来制作得到5g天线。
8.进一步地,所述金属离子还包括sr
2+
、co
2+
、cu
2+
和cr
3+
中的任一种。
9.进一步地,所述制备步骤优化,用于调控晶粒尺寸分布和气孔分布,具体包括子步骤:第一步,将通过金属离子取代得到的18h六角铁氧体样品加热到温度t1并保持时间t1;第二步,将样品冷却时间t2并保持温度t2直到样品致密化;其中,t1大于t2,t1小于t2。
10.进一步地,在所述制备步骤优化过程中,所述调控晶粒取向度和修复晶格缺陷具体包括子步骤:当监测到样品温度高于居里温度的时候,对样品施加磁场,利用磁场将样品磁矩转向于外场方向;然后骤冷,利用骤冷将磁矩冻结于外磁场方向。
11.进一步地,在所述制备步骤优化过程中,所述调控金属离子占位分布具体包括子步骤:将样品在氧化气氛中降温,用于控制mg
2+
在mg-zn 18h六角铁氧体中的离子占位。
12.进一步地,合成18h六角铁氧体材料的方式采用陶瓷制备工艺的固相反应法。
13.进一步地,在制备步骤优化后,还包括步骤:表征测试,所采用的表征测试方式包括x射线衍射xrd、扫描透射电子显微镜stem、场发射扫描电子显微镜fesem、波长色散x射线光谱wds、x射线光电子能谱xps、热重分析tga、物理性质测量系统ppms、振动样品磁强计vsm、矢量网络分析仪vna、阻抗分析仪中的任一种或多种。
14.进一步地,在调控金属离子占位分布过程中,还包括子步骤:利用穆斯堡尔谱确定金属离子占位,再利用所述物理性质测量系统ppms、振动样品磁强计vsm、矢量网络分析仪vna来确定金属离子取代和占位分布与18h六角铁氧体磁介电特性的关系。
15.一种基于磁介电材料优化的器件,该器件采用如上任一项所述方法制备得到的mg-zn 18h六角铁氧体制作得到。
16.一种基于磁介电材料优化的装置,该装置采用如上所述的基于磁介电材料优化的器件。
17.本发明的有益效果包括:本发明从改进天线基材角度出发,提供了一种制作小型化5g天线的新方法,实现高截止频率、高磁导率和介电常数、低损耗的18h六角铁氧体制备和微波性能调控优化,为宽带化、小型化5g天线提供了材料支撑,为目前较为空白的领域提供了基于磁介电材料优化的5g天线制作方法、器件及装置。
附图说明
18.为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
19.图1为六角铁氧体;图1中,(a)为mg 18h六角铁氧体(ba5mg2ti3fe
12o31
)的晶体结
构,ba为钡,mg为镁,ti为钛,fe为铁,o为氧;(b)为mg-zn 18h六角铁氧体(ba5mg
2x
zn
x
ti3fe
12o31
)在0.1-10ghz的磁谱,(b)中横坐标表示频率,纵坐标
µ’
表示磁导率的实部,
µ’’
表示磁导率的虚部,x是材料配方比例,(c)为介电谱,(c)中横坐标表示频率,纵坐标ε’表示介电常数的实部,ε
’’
表示介电常数的虚部,x是材料配方比例;(d)为mg-zn 18h六角铁氧体在最佳应用频率的磁介电性能、小型化因子和优值,(d)中横坐标表示材料配方比例,纵坐标tanδ表示材料损耗角正切,fom表示材料的优值。
20.图2为天线性能对比;图2中,(a)为基于mg 18h六角铁氧体的3.6 ghz贴片天线;(b)为三维天线增益方向图;(c)为模拟和测量的反射系数s
11
,(c)中横坐标表示频率,纵坐标表示反射系数s
11
。
21.图3为18h六角铁氧体对比;图3中,(a)为mg 18h六角铁氧体(ba5mg2ti3fe
12o31
)晶体结构;(b)为显微形貌;(c)为几类磁介电材料的m'q值和优值,(b)中横坐标为频率,纵坐标为磁导率实部与品质因数的积;(d)为mg-zn 18h六角铁氧体(ba5mg
2x
zn
x
ti3fe
12o31
)在0.1-10ghz的磁谱,(d)中横坐标表示频率,纵坐标
µ’
表示磁导率的实部,
µ’’
表示磁导率的虚部,x是材料配方比例;(e)为介电谱,(e)中横坐标表示频率,纵坐标ε’表示介电常数的实部,ε
’’
表示介电常数的虚部,x是材料配方比例。
22.图4为晶粒尺寸和相对密度的调控效果对比;图4中,(a) 为通过两步烧结工艺和一步烧结工艺得到的co-ti bam相对密度和晶粒尺寸对比,(a)中横坐标为相对密度,纵坐标为晶粒尺寸。first step sintering表示第一步烧结,second step sintering表示第二步烧结,one step sintering表示一步烧结;(b)为通过两步烧结工艺和一步烧结工艺得到的co-ti bam的磁谱,(b)中横坐标为频率,纵坐标为相对磁导率。
具体实施方式
23.本说明书中所有实施例公开的所有特征,或隐含公开的所有方法或过程中的步骤,除了互相排斥的特征和/或步骤以外,均可以以任何方式组合和/或扩展、替换。
24.鉴于背景中的问题,本发明的发明人经历了创造性的思考后认为:元素锶(sr)与元素钡(ba)同族,离子半径更小,用sr
2+
取代ba
2+
将改变晶格尺寸和超交换作用,进而对饱和磁化强度、磁晶各向异性常数、磁晶各向异性场、矫顽力等内禀参数产生影响。cu
2+
和mn
2+
取代co
2+
,都可以减小六角铁氧体的磁晶各向异性,增加饱和磁化强度,提高起始磁导率。此外,cu
2+
取代可以降低烧结温度,降低高频介电损耗,提高共振峰频率。cr
3+
和gd
3+
对fe
3+
的取代使得材料的截止频率和初始磁导率都有所提高。
25.基于上述思考,本发明具体研究了sr
2+
、zn
2+
、co
2+
、mn
2+
、cu
2+
和cr
3+
掺杂对18h六角铁氧体微波磁介电性能的调控,旨在实现高截止频率、高磁导率和介电常数、低损耗特性,进一步优化了18h六角铁氧体制备步骤,旨在实现优化18h六角铁氧体的微波磁介电性能。具体而言,研究金属离子掺杂、制备工艺控制合成材料样品,并结合先进材料表征技术分析样品物相、离子占位、离子价态、显微形貌等物理化学性质,以及结合多种测量手段确定材料静态、高频、低温、高温磁介电性能,包括如下步骤:(1)采用陶瓷制备工艺的固相反应法合成新型18h六角铁氧体材料;(2)结合密度泛函理论、穆斯堡尔谱、rietveld结构精修技术研究18h六角铁氧体阳离子占位分布;
(3)基于磁化强度进动理论、极化弛豫理论和有效介质理论分析18h六角铁氧体磁损耗与介电损耗机制;(4)借助x射线衍射(xrd)、扫描透射电子显微镜(stem)、场发射扫描电子显微镜(fesem)、波长色散x射线光谱(wds)、x射线光电子能谱(xps)、热重分析(tga)、物理性质测量系统(ppms)、振动样品磁强计(vsm)、阻抗分析仪、矢量网络分析仪(vna)等表征和测量技术研究18h六角铁氧体的晶体结构、化学组成、磁学性能、介电性能,最终获得高截止频率、高磁导率和介电常数、低损耗的18h六角铁氧体材料。
26.其中,本发明基于陶瓷制备工艺的固相反应法,并结合一系列表征测量技术,提出了关键制备步骤的优化方案,其制备步骤的优化具体包括:提出两步烧结技术、热磁骤冷退火技术、气氛退火技术,对18h六角铁氧体的微波磁介电特性进行了调控。
27.(1)两步烧结步骤应用于微波领域的低损耗铁氧体材料通常具有均匀细小晶粒的显微结构。在传统的一步烧结过程中,致密化通常伴随着快速的晶粒生长。而在两步烧结过程中,样品首先先被加热到一个较高的温度并保持很短的时间,然后快速冷却并保持在一个较低的温度直到样品致密化。第一步的短时间高温加热使样品达到中等密度,第二步的快速冷却在样品致密化的同时抑制了晶粒的过度生长。在18h六角铁氧体的制备过程中使用两步烧结步骤,通过分别控制第一步和第二步的烧结温度,实现对多晶结构的调控和微波磁介电性能的优化。
28.(2)热磁骤冷退火步骤热磁骤冷退火技术是当样品温度高于居里温度的时候施加强磁场,样品磁矩将转向于外场方向,然后快速骤冷,磁矩将被冻结于外磁场方向。热磁骤冷退火技术可以提高六角铁氧体的取向度,修复晶格缺陷,有效提升磁导率并减小损耗。
29.(3)气氛退火步骤在烧结的降温阶段,通过改变降温速率和气氛,实现对某些阳离子占位分布的调控。例如,通过在氧化气氛中快速降温可控制mg
2+
在mg-zn 18h六角铁氧体中的离子占位。
30.进一步的,对采用本发明方法制备得到的多晶mg-zn 18h六角铁氧体进行了系统性研究,包括晶体结构、物相成分、显微形貌、静态和微波磁介电性能以及它们随温度变化的关系。由本发明方法制备的mg-zn18h六角铁氧体表现出非常低的磁谱阻尼系数(a=0.09-0.19)和磁损耗(tanm=0.06)。通过改变mg与zn的原子比,可以使mg-zn18h六角铁氧体的最佳工作频率可以覆盖整个s波段,且其低损耗磁性能优于其他已知的s波段铁氧体。此外,多晶mg-zn18h六角铁氧体具有在x波段较低的铁磁共振线宽(dh=486-660oe)和在20-135℃范围内很低的阻尼系数温度稳定性(da/dt=0.0004℃1)。如图1所示,图1(b)-(d)展示了mg-zn18h六角铁氧体的主要微波性能。
31.作为天线基材,微波磁介电材料应具有高磁导率和介电常数、低磁损耗和介电损耗,以及高截止频率。由于微波磁介电材料的综合微波性能通常受限于磁性能,因此一个重要的参数是复磁导率的实部m'与品质因数q的乘积。此外,根据斯诺克定律(snoek’s law),磁导率和截止频率之间存在此消彼长的关系。为了全面评估磁性能,将m'、q和工作频率f的乘积定义为优值(figure of merit, fom)。具有高优值的材料在低损耗、高频带应用中具有更大的潜力。常见的几种磁介电材料的高频磁性能,如尖晶石铁氧表现出较高的m'q值,
但由于其较低自然共振频率,它们通常在1 ghz以下使用。得益于磁晶各向异性和电阻率的提高,传统六角铁氧体和铁氧体复合材料具有更高的截止频率,可以工作在很宽的频率范围。虽然可以通过离子取代或制备工艺优化来提升优值,但上述传统磁介电材料的优值很少超过80ghz。由本发明方法提供的mg-zn18h六角铁氧体由于在s波段具有很小的磁损耗,优值普遍高于80ghz,甚至达到了120ghz,证明了其在高频低损耗领域的应用潜力。
32.微波磁介电材料的另一个重要参数是小型化因子,表示材料用于天线基板时对天线尺寸减小的能力。受截止频率的限制,尖晶石铁氧体、六角铁氧体和铁氧体复合材料普遍应用在2.4ghz以下的频率,而本发明方法提供的mg-zn18h六角铁氧体可以在s波段提供5-7的小型化因子。例如,用作3.6 ghz贴片天线的基材,mg18h六角铁氧体表现出5.4倍的小型化因子和50%-110%的带宽提升。其性能如图2所示。
33.本发明对18h六角铁氧体中的mg-zn18h六角铁氧体(ba5mg2ti3fe12o31)进行了系统性研究,具体优化了其制备步骤和调控了其微波磁介电性能。研究发现18h六角铁氧体具有不同于传统六角铁氧体的晶体结构,可以看作是在y型六角铁氧体晶胞结构的t块中间插入含有三个氧层的六角钛酸钡块,参见图3,如图3(a)所示。通过优化后的固相反应制备工艺合成晶粒细小均匀的多晶mg-zn18h六角铁氧体(图3(b)),表现出非常低的磁谱阻尼系数(a=0.09-0.19)、微波磁损耗(tanm=0.06)和介电损耗(tand《0.006)。此外,mg-zn18h六角铁氧体在s波段的优值普遍高于80ghz,甚至达到了120ghz,证明了其低损耗磁性能优于其他已知的应用在s波段的微波铁氧体。图3(c)-(e)展示了mg-zn18h六角铁氧体的主要微波性能。
34.本发明通过引入两步烧结步骤,如图4所示,实现对多晶co-ti bam六角铁氧体晶粒尺寸和相对密度的调控(图4(a))。相比于传统一步烧结工艺,两步烧结法得到的样品具有均匀细晶粒和高阻晶界的显微结构,显著提高了截止频率和斯诺克极限,降低了400 mhz以下的微波磁损耗(图4(b))。
35.综上所述,高截止频率、高磁导率和介电常数、低损耗的微波磁介电材料是推动下一代通信系统高频化、小型化、轻量化的关键,新型18h六角铁氧体展现出在低损耗5g天线小型化的巨大应用价值。基于本发明方法不仅可以实现低成本无钴高频铁氧体的工业化制备,解决我国在高频天线基材依靠进口的“卡脖子”问题。同时,还可以提供小型化5g天线、微波器件和相应装置。
36.需要说明的是,在本发明权利要求书中所限定的保护范围内,以下实施例均可以从上述具体实施方式中,例如公开的技术原理,公开的技术特征或隐含公开的技术特征等,以合乎逻辑的任何方式进行组合和/或扩展、替换。
37.实施例1一种基于磁介电材料优化的5g天线制作方法,包括以下步骤:通过金属离子取代和制备步骤优化,制备得到适用于sub-6 ghz波段的18h六角铁氧体;所述金属离子包括mn
2+
、zn
2+
,且当所述金属离子为mn
2+
、zn
2+
时,所述适用于sub-6 ghz波段的18h六角铁氧体表示为mg-zn 18h六角铁氧体;通过改变mg与zn的原子比,用于使mg-zn18h六角铁氧体的最佳工作频段覆盖整个s波图1段;所述制备步骤优化,用于调控晶粒尺寸分布和气孔分布;以及用于调控晶粒取向度和修复晶格缺陷;以及用于调控金属离子占位分布;
将采用制备步骤优化后得到的mg-zn 18h六角铁氧体,作为5g天线基材来制作得到5g天线。
38.实施例2在实施例1的基础上,所述金属离子还包括sr
2+
、co
2+
、cu
2+
和cr
3+
中的任一种。
39.实施例3在实施例1的基础上,所述制备步骤优化,用于调控晶粒尺寸分布和气孔分布,具体包括子步骤:第一步,将通过金属离子取代得到的18h六角铁氧体样品加热到温度t1并保持时间t1;第二步,将样品冷却时间t2并保持温度t2直到样品致密化;其中,t1大于t2,t1小于t2。
40.实施例4在实施例1的基础上,在所述制备步骤优化过程中,所述调控晶粒取向度和修复晶格缺陷具体包括子步骤:当监测到样品温度高于居里温度的时候,对样品施加磁场(可为强磁场),利用磁场将样品磁矩转向于外场方向;然后骤冷,利用骤冷将磁矩冻结于外磁场方向。
41.实施例5在实施例1的基础上,在所述制备步骤优化过程中,所述调控金属离子占位分布具体包括子步骤:将样品在氧化气氛中降温,用于控制mg
2+
在mg-zn 18h六角铁氧体中的离子占位。
42.实施例6在实施例1的基础上,合成18h六角铁氧体材料的方式采用陶瓷制备工艺的固相反应法。
43.实施例7在实施例1的基础上,在制备步骤优化后,还包括步骤:表征测试,所采用的表征测试方式包括x射线衍射xrd、扫描透射电子显微镜stem、场发射扫描电子显微镜fesem、波长色散x射线光谱wds、x射线光电子能谱xps、热重分析tga、物理性质测量系统ppms、振动样品磁强计vsm、矢量网络分析仪vna、阻抗分析仪中的任一种或多种。
44.实施例8在实施例7的基础上,在调控金属离子占位分布过程中,还包括子步骤:利用穆斯堡尔谱确定金属离子占位,再利用所述物理性质测量系统ppms、振动样品磁强计vsm、矢量网络分析仪vna来确定金属离子取代和占位分布与18h六角铁氧体磁介电特性的关系。
45.实施例9一种基于磁介电材料优化的器件,该器件采用如实施例1~实施例8中任一项所述方法制备得到的mg-zn 18h六角铁氧体制作。
46.实施例10一种基于磁介电材料优化的装置,该装置采用实施例9所述的基于磁介电材料优化的器件。
47.上述技术方案只是本发明的一种实施方式,对于本领域内的技术人员而言,在本
发明公开了应用方法和原理的基础上,很容易做出各种类型的改进或变形,而不仅限于本发明上述具体实施方式所描述的方法,因此前面描述的方式只是优选的,而并不具有限制性的意义。
48.除以上实例以外,本领域技术人员根据上述公开内容获得启示或利用相关领域的知识或技术进行改动获得其他实施例,各个实施例的特征可以互换或替换,本领域人员所进行的改动和变化不脱离本发明的精神和范围,则都应在本发明所附权利要求的保护范围内。
技术特征:
1.一种基于磁介电材料优化的5g天线制作方法,其特征在于,包括以下步骤:通过金属离子取代和制备步骤优化,制备得到适用于sub-6 ghz波段的18h六角铁氧体;所述金属离子包括mn
2+
和zn
2+
,且当所述金属离子为mn
2+
和zn
2+
时,所述适用于sub-6 ghz波段的18h六角铁氧体表示为mg-zn 18h六角铁氧体;通过改变mg与zn的原子比,使mg-zn18h六角铁氧体的最佳工作频段覆盖整个s波段;所述制备步骤优化,用于调控晶粒尺寸分布和气孔分布;以及用于调控晶粒取向度和修复晶格缺陷;以及用于调控金属离子占位分布;将采用制备步骤优化后得到的mg-zn 18h六角铁氧体,作为5g天线基材来制作得到5g天线。2.根据权利要求1所述的基于磁介电材料优化的5g天线制作方法,其特征在于,所述金属离子还包括sr
2+
、co
2+
、cu
2+
和cr
3+
中的任一种。3.根据权利要求1所述的基于磁介电材料优化的5g天线制作方法,其特征在于,所述制备步骤优化,用于调控晶粒尺寸分布和气孔分布,具体包括子步骤:第一步,将通过金属离子取代得到的18h六角铁氧体样品加热到温度t1并保持时间t1;第二步,将样品冷却时间t2并保持温度t2直到样品致密化;其中,t1大于t2,t1小于t2。4.根据权利要求1所述的基于磁介电材料优化的5g天线制作方法,其特征在于,在所述制备步骤优化过程中,所述调控晶粒取向度和修复晶格缺陷具体包括子步骤:当监测到样品温度高于居里温度的时候,对样品施加磁场,利用磁场将样品磁矩转向于外场方向;然后骤冷,利用骤冷将磁矩冻结于外磁场方向。5.根据权利要求1所述的基于磁介电材料优化的5g天线制作方法,其特征在于,在所述制备步骤优化过程中,所述调控金属离子占位分布具体包括子步骤:将样品在氧化气氛中降温,用于控制mg
2+
在mg-zn 18h六角铁氧体中的离子占位。6.根据权利要求1所述的基于磁介电材料优化的5g天线制作方法,其特征在于,合成18h六角铁氧体材料的方式采用陶瓷制备工艺的固相反应法。7.根据权利要求1所述的基于磁介电材料优化的5g天线制作方法,其特征在于,在制备步骤优化后,还包括步骤:表征测试,所采用的表征测试方式包括x射线衍射xrd、扫描透射电子显微镜stem、场发射扫描电子显微镜fesem、波长色散x射线光谱wds、x射线光电子能谱xps、热重分析tga、物理性质测量系统ppms、振动样品磁强计vsm、矢量网络分析仪vna、阻抗分析仪中的任一种或多种。8.根据权利要求7所述的基于磁介电材料优化的5g天线制作方法,其特征在于,在调控金属离子占位分布过程中,还包括子步骤:利用穆斯堡尔谱确定金属离子占位,再利用所述物理性质测量系统ppms、振动样品磁强计vsm、矢量网络分析仪vna来确定金属离子取代和占位分布与18h六角铁氧体磁介电特性的关系。9.一种基于磁介电材料优化的器件,其特征在于,该器件采用如权利要求1~8中任一项所述方法制备得到的mg-zn 18h六角铁氧体制作得到。10.一种基于磁介电材料优化的装置,其特征在于,该装置采用权利要求9所述的基于磁介电材料优化的器件。
技术总结
本发明公开了一种基于磁介电材料优化的5G天线制作方法、器件及装置,属于微波器件制作领域,包括步骤:通过金属离子取代和制备步骤优化,制备得到适用于Sub-6 GHz波段18H六角铁氧体;所述制备步骤优化,用于调控晶粒尺寸分布和气孔分布的优化;以及用于调控晶粒取向度和修复晶格缺陷;以及用于调控金属离子占位分布;将采用制备步骤优化后得到的Mg-Zn 18H六角铁氧体,作为5G天线基材来制作得到5G天线。本发明改进了天线基材,提供了一种制作小型化5G天线和其他微波器件的新方法。型化5G天线和其他微波器件的新方法。型化5G天线和其他微波器件的新方法。
技术研发人员:宋科 何义奎 帅翔
受保护的技术使用者:四川航天职业技术学院(四川航天高级技工学校)
技术研发日:2023.09.12
技术公布日:2023/10/20
版权声明
本文仅代表作者观点,不代表航家之家立场。
本文系作者授权航家号发表,未经原创作者书面授权,任何单位或个人不得引用、复制、转载、摘编、链接或以其他任何方式复制发表。任何单位或个人在获得书面授权使用航空之家内容时,须注明作者及来源 “航空之家”。如非法使用航空之家的部分或全部内容的,航空之家将依法追究其法律责任。(航空之家官方QQ:2926969996)
航空之家 https://www.aerohome.com.cn/
航空商城 https://mall.aerohome.com.cn/
航空资讯 https://news.aerohome.com.cn/
上一篇:一种防菌保护膜的抗菌性能检测装置的制作方法 下一篇:一种分水阀结构的制作方法