一种在复合位移加载下波纹管的多轴疲劳寿命预测方法

未命名 10-21 阅读:73 评论:0


1.本发明涉及多轴疲劳寿命预测技术领域,尤其是涉及一种在复合位移加载下波纹管的多轴疲劳寿命预测方法。


背景技术:

2.金属波纹管是一种具有减震降噪和位移补偿功能的管道连接件,在电力与化工领域广泛用于补偿管路设备因温差造成的轴向、横向、角向位移及复合位移。目前广泛使用的ejma(膨胀节制造商协会)设计标准,可以较好地指导波纹管在轴向位移加载下的疲劳寿命,但用上述标准来预测复合位移加载下波纹管的疲劳寿命时,计算疲劳寿命与真实疲劳寿命存在较大出入。这是由于波纹管在复合位移加载下承受着多轴疲劳载荷作用,其失效形式不同于仅有轴向位移加载下的波纹管。基于上述现象,本发明对波纹管进行了复合位移加载下的多轴疲劳试验。在给定的复合位移加载下,根据ejma计算得到试验波纹管的疲劳寿命大约为12000次(取设计安全系数为1时),在进行多轴疲劳试验时,波纹管在循环45000次后仍未发生泄露。基于当时试验成本考虑,随后继续保持轴向位移加载量不变,加大横向位移量进行疲劳试验,最终又循环了28490次后波纹管发生泄露。上述试验现象表明ejma标准确实无法满足计算真实寿命的需求,由于预测波纹管在复合位移加载下的疲劳寿命对管道系统的可靠性运转具有重大意义,因而根据多轴疲劳领域对波纹管的疲劳寿命进行研究。
3.目前多轴疲劳领域在预测疲劳寿命时大致分为三种方法,分别为等效法、能量法和临界面法。基于临界面法的疲劳寿命预测模型由于其具有比较明确的物理意义,且具有可以根据疲劳裂纹萌生和扩展类型将临界面上相应的应力应变参数进行组合等特点,能够较好地估算不同材料不同加载方式下的疲劳寿命,是目前研究最多、应用最广的多轴疲劳分析方法。人们根据所研究对象的实际受载情况及失效形式提出了不同的临界面模型,其中比较应用比较广泛的是fs模型(剪切失效)与swt模型(拉伸失效)。波纹管在复合位移循环加载下处于拉剪、压剪应力状态,其疲劳破坏表现为混合开裂行为。本发明基于上述技术背景下,汲取fs模型和swt模型的优势并引入一个权函数来定义法向和切向载荷在多轴损伤参量dp所占的比重,提出了一个波纹管在复合位移加载下具有较高预测精度的多轴疲劳寿命预测方法。


技术实现要素:

4.本发明的目的是提供一种在复合位移加载下波纹管的多轴疲劳寿命预测方法,解决了波纹管在复合位移加载下预测精度较低的问题。
5.为实现上述目的,本发明提供了一种在复合位移加载下波纹管的多轴疲劳寿命预测方法,包括以下步骤:
6.s1、通过有限元软件对波纹管进行建模及数值模拟;
7.s2、确定波纹管可能发生疲劳破坏的危险区域,获取若干危险区域所有单元在一
个循环周期中的6个应力分量与6个应变分量作为输入数据;
8.s3、找到每个危险区域对应的最大等效应力处,根据权函数定义求α值;
9.s4、通过输入数据和权函数α确定最大损伤参量dp所在的平面,即波纹管发生破坏的临界面;
10.s5、根据多轴疲劳寿命预测方法和miner线性损伤累积理论以求解波纹管在复合位移加载下的疲劳寿命。
11.优选的,在步骤s1中,建模及数值分析具体包括:创建三维模型、材料属性设置、施加载荷与设置边界条件、网格划分、提交分析。
12.优选的,在步骤s3中,权函数α的表达式为:
13.α=(γ
max-γ
min
)/(ε
1,max-ε
1,min
)
14.其中:α是关于疲劳开裂的权函数,用来描述拉伸或剪切行为对材料失效的贡献,γ
max
、γ
min
、ε
1,max
、ε
1,min
分别为波纹管危险区域处的最大剪切应变、最小剪切应变、最大法向应变、最小法向应变,其值在等效(mises)应力最大处获得。在查看后处理结果时,定位到最大等效应力所在单元并提取该单元的最大剪切应变、最小剪切应变、最大法向应变与最小法向应变,然后求得权函数α值。
15.优选的,在步骤s4中,最大损伤参量dp的表达式为:
16.dp=(1-α)(δεn·
σ
n,max
)+α(δγ
·
τ
max
)
17.其中,dp为多轴损伤参量,α是权函数,δεn为波纹管临界面上的法向应变幅,σ
n,max
为临界面上的最大法向应力,δγ是临界面上的剪切应变幅,τ
max
是临界面上的最大剪切应力。
18.优选的,在步骤s5中,多轴疲劳寿命预测模型为:
[0019][0020]
其中,σ'f为疲劳强度系数,ε'f为疲劳延性系数,b为疲劳强度指数,c为疲劳延性指数,nf为疲劳寿命;
[0021]
miner线性损伤累积理论的表达式为:
[0022][0023]
式中:ni为第i个循环加载下的试验疲劳寿命。根据波纹管多轴疲劳试验,n1=45000,n2=28490。ni为第i个循环加载下依据多轴疲劳寿命预测模型计算的理论疲劳寿命,即为第i个循环加载下的nf。最后计算临界面上的累积疲劳损伤d和疲劳失效的载荷块数λ,确定波纹管最终的多轴疲劳寿命n。其中疲劳失效的载荷块数λ和多轴疲劳寿命n的表达式为:
[0024][0025]
n=λ
×
(n1+n2)。
[0026]
因此,本发明采用上述结构的一种在复合位移加载下波纹管的多轴疲劳寿命预测方法,具备以下有益效果:
[0027]
(1)本发明引入权函数来同时考虑法向、切向载荷对波纹管的疲劳性能的影响,得到疲劳寿命预测模型,以最大损伤值dp所在平面所在的平面为疲劳破坏的临界面,计算得到的裂纹角度θ与试验后波纹管裂纹方向基本一致。
[0028]
(2)本发明根据复合位移加载情况,引入权函数综合考虑了法向与切向载荷对疲劳开裂的贡献。
[0029]
(3)本发明基于临界面法理论,疲劳破坏的物理意义明确,所提的多轴疲劳寿命预测模型可以较好地预测波纹管在复合位移加载下的疲劳寿命。
[0030]
下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。
附图说明
[0031]
图1为本发明一种在复合位移加载下波纹管的多轴疲劳寿命预测方法的流程图;
[0032]
图2为本发明一种在复合位移加载下波纹管的多轴疲劳寿命预测方法的波纹管复合位移示意图;
[0033]
图3为本发明一种在复合位移加载下波纹管的多轴疲劳寿命预测方法的两种工况下的复合位移加载示意图;
[0034]
图4为本发明一种在复合位移加载下波纹管的多轴疲劳寿命预测方法的疲劳破坏的危险区域示意图;
[0035]
图5为本发明一种在复合位移加载下波纹管的多轴疲劳寿命预测方法的波纹管危险区域3处的正应变与剪应变的载荷历程示意图;
[0036]
图6为本发明一种在复合位移加载下波纹管的多轴疲劳寿命预测方法的临界面位置示意图;
[0037]
图7为本发明一种在复合位移加载下波纹管的多轴疲劳寿命预测方法的波纹管峰、谷处截面示意图;
[0038]
图8为本发明一种在复合位移加载下波纹管的多轴疲劳寿命预测方法的波纹管泄露时裂纹开裂的方向;
[0039]
图9为本发明一种在复合位移加载下波纹管的多轴疲劳寿命预测方法的波纹管在复合位移加载下的预测结果示意图。
具体实施方式
[0040]
以下通过附图和实施例对本发明的技术方案作进一步说明。
[0041]
除非另外定义,本发明使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本发明中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
[0042]
实施例
[0043]
如图1所示,本发明提供了一种在复合位移加载下波纹管的多轴疲劳寿命预测方法,包括以下步骤:
[0044]
s1、通过有限元软件对波纹管进行建模及数值模拟;
[0045]
s2、确定波纹管可能发生疲劳破坏的危险区域,获取若干危险区域所有单元在一个循环周期中的6个应力分量与6个应变分量作为输入数据;
[0046]
s3、找到每个危险区域对应的最大等效应力处,根据权函数定义求α值;
[0047]
s4、通过输入数据和权函数α确定最大损伤参量dp所在的平面,即波纹管发生破坏的临界面;
[0048]
s5、根据多轴疲劳寿命预测方法和miner线性损伤累积理论以求解波纹管在复合位移加载下的疲劳寿命。
[0049]
在步骤s1中,采用abaqus有限元软件,对波纹管在复合位移载荷(图2)作用下进行数值模拟,主要包括波纹管的建模、设置材料属性、网格划分、施加载荷与边界条件、提交分析等。在创建三维模型后,首先设置材料参数,波纹管材料为304不锈钢。然后划分网格时进行网格无关性验证,选取合适的网格尺寸保证计算精度与速度。随后根据实际工况对波纹管施加载荷与边界条件,最后提交分析进行有限元仿真。
[0050]
在步骤s2中,复合位移载荷作用下波纹管整体承受拉剪、压剪复合载荷。根据疲劳试验可知该波纹管相当于在两种工况下进行了试验,于是在进行仿真时,定义了case1与case2两种工况(图3)保证与实际工况相符。将波纹管分别在case1与case2两种工况下进行模拟,通过数值模拟得到等效应力(mises应力)分布结果,确定可能发生破坏的危险区域。分析可知,在case1和case2两种工况下,波纹管左上方与右下方的峰谷处等效应力较大,故选取这四个位置附近区域作为疲劳破坏的危险区域,如图4所示。获取危险区域所在单元在每个加载周期内的6个应力分量(s11、s22、s33、s12、s13、s23)与6个应变分量(e11、e22、e33、e12、e13、e23)。
[0051]
在步骤s3中,α是关于开裂行为的权函数,用来描述拉伸或剪切行为对材料失效的贡献,其表达式为:
[0052]
α=(γ
max-γ
min
)/(ε
1,max-ε
1,min
)
[0053]
式中:γ
max
、γ
min
、ε
1,max
、ε
1,min
分别为波纹管危险区域处的最大剪切应变、最小剪切应变、最大法向应变、最小法向应变,其值在mises应力最大处的位置获得。
[0054]
分别对四个危险区域,定位到最大等效应力所在单元并提取该单元对应的应力应变分量,得到其最大剪切应变、最小剪切应变、最大法向应变与最小法向应变。如图5所示,根据权函数的定义计算得到危险区域3处α=0.4219。同理得到其他危险区域处的α值。危险区域1-4处的α值计算结果见表1。
[0055]
表1危险区域1-4处的α值
[0056][0057]
在步骤s4中,损伤参量dp的表达形式为:
[0058]
dp=(1-α)(δεn·
σ
n,max
)+α(δγ
·
τ
max
)
[0059]
式中:dp为多轴损伤参量,δεn为波纹管临界面上的法向应变幅,σ
n,max
为临界面上
的最大法向应力,δγ是临界面上的剪切应变幅,τ
max
是临界面上的最大剪切应力。σ'f为疲劳强度系数ε'f为疲劳延性系数,b为疲劳强度指数,c为疲劳延性指数。α是关于开裂行为的权函数,在步骤3中已求。
[0060]
在波纹管危险区域处,其临界面上的应力应变分量由旋转矩阵计算得到。确定临界面(最大损伤参量dp所在平面)的方法如图6和图7所示,被涂蓝色阴影的x'y'平面为裂纹开裂所在的临界面,x'轴和θ角表示裂纹开裂的方向。其中x'y'平面首先是旋转xy平面绕z轴(波纹管表面的垂直方向)逆时针旋转θ角,此时坐标系为x'y'z,然后继续绕x'轴逆时针旋转使z’轴与z轴为角,此时坐标系为新生成的x'y'z'。通过旋转矩阵m计算危险区域在任意θ和时的对应的应力和应变,旋转后的应力状态和应变状态可以表述为:
[0061]
σ'=m
t
σm
[0062]
ε'=m
t
εm
[0063]
其中
[0064][0065]
式中:m为坐标旋转矩阵,m
t
为矩阵m的转置矩阵。
[0066]
随后选用不同的α值,依据多轴寿命预测方法进行预估不同危险区域的疲劳寿命。通过matlab编程遍历所有θ和得到不同危险区域处的最大损伤参量dp和对应的临界角度θ
critical
和由临界角度θ
critical
和确定的损伤平面即为波纹管发生疲劳开裂的临界面。通过matlab计算得到危险区域在case1与case2工况对应的临界角度和损伤参量dp,见表2。
[0067]
表2危险区域在case1与case2工况对应的临界角度和损伤参量dp
[0068][0069]
在步骤s5中,多轴疲劳寿命预测模型为:
[0070][0071]
其中,σ'f为疲劳强度系数,ε'f为疲劳延性系数,b为疲劳强度指数,c为疲劳延性指数,nf为疲劳寿命。波纹管材料的疲劳性能参数见表3。
[0072]
表3304材料疲劳性能参数
[0073][0074]
将步骤4中计算得到的dp值代入寿命预测模型得到疲劳寿命nf,见表4。
[0075]
表4危险区域在case1与case2工况的疲劳寿命nf[0076][0077]
miner线性损伤累积理论的表达式为:
[0078][0079]
式中:ni为第i个循环加载下的试验疲劳寿命。根据波纹管多轴疲劳试验,n1=45000,n2=28490。ni为第i个循环加载下依据多轴疲劳寿命预测模型计算的理论疲劳寿命,即为第i个循环加载下的n
fi
,可由表4查得。最后计算临界面上的累积疲劳损伤d和疲劳失效的载荷块数λ,确定波纹管最终的多轴疲劳寿命n。其中疲劳失效的载荷块数λ和多轴疲劳寿命n的表达式为:
[0080][0081]
n=λ
×
(n1+n2)
[0082]
根据miner线性损伤累积理论,得到波纹管四个危险区域在两次循环加载下的累积疲劳损伤值d和载荷块数λ,见表5。取最大累积疲劳损伤值d所在区域对应的疲劳寿命即为波纹管的多轴疲劳寿命。
[0083]
表5波纹管四个危险区域处循环加载下的累积疲劳损伤值d
[0084][0085]
由表2和表5可知:最大损伤参量dp在危险区域3处,与疲劳试验的裂纹位置一致,并且对应的θ
critical
≈90
°
,与图8中波纹管裂纹开裂的方向吻合程度较好。根据n=λ
×
(n1+n2)计算波纹管危险区域3处疲劳寿命n=77603次。波纹管在复合位移加载下的预测结果如图9所示。
[0086]
因此,本发明采用上述的一种在复合位移加载下波纹管的多轴疲劳寿命预测方法,以最大损伤值dp所在平面所在的平面为疲劳破坏的临界面,计算得到的裂纹角度θ与试验后波纹管裂纹方向基本一致。根据复合位移加载情况,引入权函数综合考虑了法向与切向载荷对疲劳开裂的贡献。并且基于临界面法理论,疲劳破坏的物理意义明确,所提的多轴疲劳寿命预测模型可以较好地预测波纹管在复合位移加载下的疲劳寿命。
[0087]
最后应说明的是:以上实施例仅用以说明本发明的技术方案而非对其进行限制,尽管参照较佳实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依
然可以对本发明的技术方案进行修改或者等同替换,而这些修改或者等同替换亦不能使修改后的技术方案脱离本发明技术方案的精神和范围。

技术特征:
1.一种在复合位移加载下波纹管的多轴疲劳寿命预测方法,其特征在于,包括以下步骤:s1、通过有限元软件对波纹管进行建模及数值模拟;s2、确定波纹管可能发生疲劳破坏的危险区域,获取若干危险区域所有单元在一个循环周期中的6个应力分量与6个应变分量作为输入数据;s3、找到每个危险区域对应的最大等效应力处,根据权函数定义求α值;s4、通过输入数据和权函数α确定最大损伤参量dp所在的平面,即波纹管发生破坏的临界面;s5、根据多轴疲劳寿命预测方法和miner线性损伤累积理论以求解波纹管在复合位移加载下的疲劳寿命。2.根据权利要求1所述的一种在复合位移加载下波纹管的多轴疲劳寿命预测方法,其特征在于,在步骤s1中,建模及数值分析具体包括:创建三维模型、材料属性设置、施加载荷与设置边界条件、网格划分、提交分析。3.根据权利要求2所述的一种在复合位移加载下波纹管的多轴疲劳寿命预测方法,其特征在于,在步骤s3中,权函数α的表达式为:α=(γ
max-γ
min
)/(ε
1,max-ε
1,min
)其中:α是关于疲劳开裂的权函数,用来描述拉伸或剪切行为对材料失效的贡献,γ
max
、γ
min
、ε
1,max
、ε
1,min
分别为波纹管危险区域处的最大剪切应变、最小剪切应变、最大法向应变、最小法向应变,其值在等效(mises)应力最大处获得;在查看后处理结果时,定位到最大等效应力所在单元并提取该单元的最大剪切应变、最小剪切应变、最大法向应变与最小法向应变,然后求得权函数α值。4.根据权利要求3所述的一种在复合位移加载下波纹管的多轴疲劳寿命预测方法,其特征在于,在步骤s4中,最大损伤参量dp的表达式为:dp=(1-α)(δε
n
·
σ
n,max
)+α(δγ
·
τ
max
)其中,dp为多轴损伤参量,α是权函数,δε
n
为波纹管临界面上的法向应变幅,σ
n,max
为临界面上的最大法向应力,δγ是临界面上的剪切应变幅,τ
max
是临界面上的最大剪切应力。5.根据权利要求4所述的一种在复合位移加载下波纹管的多轴疲劳寿命预测方法,其特征在于,在步骤s5中,多轴疲劳寿命预测模型为:其中,σ'
f
为疲劳强度系数,ε'
f
为疲劳延性系数,b为疲劳强度指数,c为疲劳延性指数,n
f
为疲劳寿命;miner线性损伤累积理论的表达式为:式中:n
i
为第i个循环加载下的试验疲劳寿命,n
i
为第i个循环加载下依据多轴疲劳寿命预测模型计算的理论疲劳寿命,即为第i个循环加载下的n
f
;最后计算临界面上的累积疲劳损伤d和疲劳失效的载荷块数λ,确定波纹管最终的多轴疲劳寿命n;其中疲劳失效的载荷块
数λ和多轴疲劳寿命n的表达式为:n=λ
×
(n1+n2)。

技术总结
本发明公开了一种在复合位移加载下波纹管的多轴疲劳寿命预测方法,属于多轴疲劳寿命预测技术领域。包括以下步骤:通过有限元软件对波纹管进行建模及数值模拟;确定波纹管可能发生疲劳破坏的危险区域,获取若干危险区域所有单元在一个循环周期中的6个应力分量与6个应变分量作为输入数据;找到危险区域对应的最大等效应力处,根据权函数定义求α值;通过输入数据和权函数α确定最大损伤参量DP所在的平面,即波纹管发生破坏的临界面;根据多轴疲劳寿命预测方法和Miner线性损伤累积理论以求解波纹管在复合位移加载下的疲劳寿命。本发明引入权函数综合考虑了法向与切向载荷对疲劳开裂的贡献,能够较好地预测波纹管在复合位移加载下的疲劳寿命。加载下的疲劳寿命。加载下的疲劳寿命。


技术研发人员:马园园 张建明 苏天一 夏立雨 宋宇航 曲政伟
受保护的技术使用者:辽宁工业大学
技术研发日:2023.08.04
技术公布日:2023/10/19
版权声明

本文仅代表作者观点,不代表航家之家立场。
本文系作者授权航家号发表,未经原创作者书面授权,任何单位或个人不得引用、复制、转载、摘编、链接或以其他任何方式复制发表。任何单位或个人在获得书面授权使用航空之家内容时,须注明作者及来源 “航空之家”。如非法使用航空之家的部分或全部内容的,航空之家将依法追究其法律责任。(航空之家官方QQ:2926969996)

航空之家 https://www.aerohome.com.cn/

航空商城 https://mall.aerohome.com.cn/

航空资讯 https://news.aerohome.com.cn/

分享:

扫一扫在手机阅读、分享本文

评论

相关推荐