一种投影最小最大凹函数波达方向估计方法和装置

未命名 10-19 阅读:106 评论:0


1.本发明属于信号处理技术领域,涉及一种投影最小最大凹函数波达方向估计方法和装置。


背景技术:

2.信号源的波达方向估计和角度定位在阵列信号处理中具有至关重要的意义,它指的是测量信号源相对于天线阵列的到达角度。准确的波达方向估计和角度定位对于无线通信、雷达、声呐、声源定位等应用至关重要,它能提供有关信号源位置、运动状态以及环境信息的关键信息。通过优化角度定位算法和技术,可以实现更精确的信号源定位,提高系统性能和应用效果。传统的角度定位技术包括波束形成和子空间方法,例如music和esprit算法。子空间类方法利用了观测数据的统计特性来获得波达方向估计、实现角度定位,因此为了达到准确的估计和角度定位,需要充分的观测数据和足够数量的不相关信号源。
3.随着不同信号估计理论的出现,目前一些限制已经得到了较好的解决。在此背景下,人们提出了很多创新的波达方向估计和角度定位方法,例如在网、离网和无网波达方向估计和角度定位方法。通过将信号空间划分成特定网格,然后将角度定位问题转化为具有挑战的优化问题。并借助不同的范数约束规则,搜索谱峰,这些方法通常使用范数、范数(0《p《1)、洛伦兹范数和罗森范数等近似范数,然而会导致目标函数成为非凸函数,这在数学求解上具有一定难度,且无法保证所求最优解为全局最优解。mc(minimax concave)函数虽然可以通过参数设置使目标函数为凸函数,但是要求线性运算符为非奇异矩阵。不幸的是,在波达方向估计或者角度定位应用中,很难满足这一条件。


技术实现要素:

4.本发明要解决的技术问题是,提供一种投影最小最大凹函数波达方向估计方法和装置,采用基于投影最小最大凹函数(pmc)实现波达方向估计,该函数可以最大程度近似范数,且在bhb为非奇异矩阵的情况下仅通过参数设置使目标函数为凸函数。本发明利用投影最小最大凹函数构建波达方向估计的优化问题,从而更好地促使待恢复信号具备在空间网格上的稀疏性。通过这种优化策略,可以实现更准确的角度定位。
5.为实现上述目的,本发明采用如下的技术方案:
6.一种投影最小最大凹函数波达方向估计方法,包括如下步骤:
7.步骤s1、获得天线阵列多重测量矩阵;
8.步骤s2、对天线阵列多重测量矩阵进行奇异值分解,得到降维、降噪后的多重测量矩阵;
9.步骤s3、根据降维、降噪后的多重测量矩阵,构建投影最小最大凹函数的波达方向估计优化模型;
10.步骤s4、求解波达方向估计优化模型,得到包含角度信息的稀疏解;
11.步骤s5、根据包含角度信息的稀疏解,得到精确的估计角度。
12.作为优选,步骤s1中,根据预设天线阵列模型,获得天线阵列多重测量矩阵。
13.作为优选,步骤s4中,通过近端梯度下降法求解波达方向估计优化模型,得到包含角度信息的稀疏解。
14.作为优选,步骤s5中,根据包含角度信息的稀疏解,通过搜索谱峰位置,得到精确的估计角度。
15.本发明还提供一种投影最小最大凹函数波达方向估计装置,包括:
16.获取模块,用于获得天线阵列多重测量矩阵;
17.分解模块,用于对天线阵列多重测量矩阵进行奇异值分解,得到降维、降噪后的多重测量矩阵;
18.构建模块,用于根据降维、降噪后的多重测量矩阵,构建投影最小最大凹函数的波达方向估计优化模型;
19.计算模块,用于求解波达方向估计优化模型,得到包含角度信息的稀疏解;
20.估计模块,用于根据包含角度信息的稀疏解,得到精确的估计角度。
21.作为优选,获取模块,用于根据预设天线阵列模型,获得天线阵列多重测量矩阵。
22.作为优选,计算模块,用于通过近端梯度下降法求解波达方向估计优化模型,得到包含角度信息的稀疏解。
23.作为优选,估计模块,用于根据包含角度信息的稀疏解,通过搜索谱峰位置,得到精确的估计角度。
24.本发明具有如下有益效果:
25.(1)解决了已经存在的基于范数(0《p《1)、洛伦兹范数和罗森范数等近似范数的波达方向估计和角度定位方法的非凸稀疏优化问题,降低了求解上的挑战。本发明提出的投影最小最大凹函数波达方向估计方法是一种凸稀疏优化问题,创造性地解决了目标函数求解困难的问题。
26.(2)在保证目标函数易于求解的前提下,本发明所使用的投影最小最大凹函数方法不仅可以提高估计的精度,而且可以精准获得来波信号的幅度,也可在低信噪比和少量快拍的情况下获得极高的波达方向估计精度。
附图说明
27.为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
28.图1是基于均匀线阵的波达方向估计原理图;
29.图2是本发明实施案例投影最小最大凹函数波达方向估计方法流程图;
30.图3是本发明实施案例投影最小最大凹函数波达方向估计方法的误差仿真结果图;
31.图4是本发明实施案例投影最小最大凹函数波达方向估计方法的成功率仿真结果图。
32.图5是本发明实施案例投影最小最大凹函数波达方向估计方法的均方根误差随快拍数变化的仿真结果图。
具体实施方式
33.下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
34.为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
35.实施例1:
36.如图1所示,基于均匀线阵的波达方向估计系统由天线阵列、信号处理单元和角度估计算法组成。天线阵列是接收来波信号的装置,通常由一组等距排列的天线或者根据需要设计的天线阵列结构组成。这些天线接收到来自信号源的信号,并将其传输到信号处理单元。信号处理单元接收到来自天线的信号,并对其进行放大、滤波和数字化处理。它负责将接收到的模拟信号转换为数字信号,以便后续的处理和分析。经过本发明所提的波达方向估计算法最终估计来波方向。
37.如图2所示,本发明实施例提供一种投影最小最大凹函数波达方向估计方法,包括如下步骤:
38.步骤s1、获得天线阵列多重测量矩阵;
39.步骤s2、对天线阵列多重测量矩阵进行奇异值分解,得到降维、降噪后的多重测量矩阵;
40.步骤s3、根据降维、降噪后的多重测量矩阵,构建投影最小最大凹函数的波达方向估计优化模型;
41.步骤s4、求解波达方向估计优化模型,得到包含角度信息的稀疏解;
42.步骤s5、根据包含角度信息的稀疏解,得到精确的估计角度。
43.作为本发明实施例的一种实施方式,步骤s1中,假设天线阵列由m个全向天线构成的均匀线阵,均匀线阵相邻阵元间距d为波长λ的一半,在t时刻,天线阵列的输出y可以表示为:
[0044][0045]
其中,k代表信源的个数,表示第k个远场窄带信号源作用到均匀线阵的相位差,以第一个阵元为坐标原点,sk(t)为t时刻第k个信源的采样值,为均匀线阵的导向矩阵,为t时刻系统的加性噪声。对于t个采样快拍,天线阵列的输出矩阵可以表示

[0046]
根据均匀线阵排列结构,其导向矩阵可以表示为:
[0047][0048][0049]
作为本发明实施例的一种实施方式,步骤s2中,为了降低噪声对波达方向估计的影响和减小计算复杂度,对天线阵列的输出矩阵y进行奇异值分解,得到y=u∑vh,其中和都是酉矩阵,包含k个大元素和(m-k)个小元素;根据奇异值大小可以得到一个新的天线阵列输出矩阵值大小可以得到一个新的天线阵列输出矩阵ik为单位矩阵;经过线性变换后得到y
sv
=as
sv
+n
sv
,s
sv
=svdk,n
sv
=nvdk。
[0050]
作为本发明实施例的一种实施方式,步骤s3中,将空域信号来波方向进行划分,相对空间角度位置,信号来波方向呈现稀疏性,根据信号估计理论,可以将信号空间-90
°
~90
°
划分为n个等分网格,且满足n>>k,θ={θ1,

,θn}表示信号空间中所有可能的入射角度,过完备字典矩阵b,可以表示为度,过完备字典矩阵b,可以表示为原信号s(t)在过完备字典矩阵b后可以表示为其中
[0051]
构建投影最小最大凹函数的波达方向估计优化模型,可以建模为:
[0052][0053]
其中,为待重构的信号,μ为正则化参数,平衡残差和约束项为待重构的信号,μ为正则化参数,平衡残差和约束项为投影最小最大凹函数,其具体表达式为:
[0054][0055]
其中,γ为调节参数,γ越小越接近于l0范数;b
+
为b的moore-penrose广义逆矩阵;v为莫罗包络的中间变量。
[0056]
作为本发明实施例的一种实施方式,步骤s4中,将上述波达方向估计优化模型重写为:
[0057][0058]
令当
时,f(z)是关于z凸函数,其中为bhb的严格正特征值。
[0059]
当满足上述条件时,所述最优化问题为凸优化,利用近端梯度下降法可以获得全局最优解,具体为:
[0060]
将f(z)在zk点进行泰勒展开:
[0061][0062]
其中,zk为z在第k次的迭代值,《
·
,
·
》表示两个矩阵的内积,β为步长,控制着收敛速度,gk为f(z)在zk处的导数,具体为:
[0063][0064]
其中,soft为近端算子:
[0065][0066][0067]
其中,q为近端算子中间变量,q
*
为近端算子最优解,z(i,:)为z的第i行,q
*
(i,:)为q
*
的第i行。
[0068][0069]
其中,β∈(0,2/(λ
max
(bhb)+μγ-1
)),λ
max
(bhb)为bhb的最大特征值。当||z
k+1-zk||f/||zk||f≤ε或者达到最大迭代次数时,可认为该算法收敛到全局最小值,ε为误差参数,通常取10-6

[0070]
作为本发明实施例的一种实施方式,步骤s5中,对步骤s4所求最优解z
*
每行取l2范数,寻找谱峰的位置,根据信号空间网格划分规则即可得到对应的角度信息。
[0071]
进一步的,为了验证本发明的有益效果,本发明实施例通过仿真实验验证了所述效果。假设天线阵列由具有8个全向阵元的均匀线阵构成,均匀线阵相邻阵元间距d为波长λ的一半,信号空间-90
°
~90
°
以角度间隔1
°
划分网格,采用均方根误差(rmse)表示本发明波达方向估计性能,具体公式如下:
[0072][0073]
其中,k为远场窄带信源的个数,p为蒙特卡洛重复试验次数,为第p次重复试
验中第k个远场窄带信源的估计值,θk为第k个信源的真实角度,在本发明实施例中,为了避免随机误差的影响,所有实验结果的蒙特卡洛重复试验次数为500次。
[0074]
图3是一种投影最小最大凹函数波达方向估计方法的误差仿真结果图。设置信噪比(snr)范围为-5db~20db,快拍数量t=10,远场窄带信源设置为[-12+rand,30+rand],rand表示随机生成一个分布在0~1范围内的随机数。1)方法:采用范数作为稀疏约束项,采用拟牛顿法求解目标函数;2)方法:采用范数作为稀疏约束项,并且对天线阵列的输出进行奇异值分解以达到数据降维、降噪的效果;3)sfw-l21方法:采用加权范数作为稀疏诱导项,利用matlab的凸优化工具箱(cvx)求解。从图中结果可以看到:相比于其他算法,本发明实施例在-5db~20db范围内要优于其他三种算法。
[0075]
图4是一种投影最小最大凹函数波达方向估计方法的成功率仿真结果图,具体参数设置与图3相同。从图中可以看到:本发明实施例提出的波达方向估计成功率要明显高于其他三种方法,在0db时几乎达到100%识别;在-5db时成功率达到60%左右。这验证了本发明所提方法在低信噪比下的优势。
[0076]
图5是一种投影最小最大凹函数波达方向估计方法的均方根误差随快拍数变化的仿真结果图。信噪比(snr)固定在15db,远场窄带信源设置为[-12+rand,30+rand],rand表示随机生成一个分布在0~1范围内的随机数,快拍数t设置为4~50。从图中可以看到:sfw-l21方法在少量快拍下性能最差,随着快拍数的增加,性能与本发明实施例所提方法接近;另外两种方法的性能随着快拍数的增加而增加;本发明实施例所提方法在少量快拍下具有明显优势。
[0077]
实施例2:
[0078]
本发明实施例还提供一种投影最小最大凹函数波达方向估计装置,包括:
[0079]
获取模块,用于获得天线阵列多重测量矩阵;
[0080]
分解模块,用于对天线阵列多重测量矩阵进行奇异值分解,得到降维、降噪后的多重测量矩阵;
[0081]
构建模块,用于根据降维、降噪后的多重测量矩阵,构建投影最小最大凹函数的波达方向估计优化模型;
[0082]
计算模块,用于求解波达方向估计优化模型,得到包含角度信息的稀疏解;
[0083]
估计模块,用于根据包含角度信息的稀疏解,得到精确的估计角度。
[0084]
作为本发明实施例的一种实施方式,获取模块,用于根据预设天线阵列模型,获得天线阵列多重测量矩阵。
[0085]
作为本发明实施例的一种实施方式,计算模块,用于通过近端梯度下降法求解波达方向估计优化模型,得到包含角度信息的稀疏解。
[0086]
作为本发明实施例的一种实施方式,估计模块,用于根据包含角度信息的稀疏解,通过搜索谱峰位置,得到精确的估计角度。
[0087]
以上所述的实施例仅是对本发明优选方式进行的描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。

技术特征:
1.一种投影最小最大凹函数波达方向估计方法,其特征在于,包括如下步骤:步骤s1、获得天线阵列多重测量矩阵;步骤s2、对天线阵列多重测量矩阵进行奇异值分解,得到降维、降噪后的多重测量矩阵;步骤s3、根据降维、降噪后的多重测量矩阵,构建投影最小最大凹函数的波达方向估计优化模型;步骤s4、求解波达方向估计优化模型,得到包含角度信息的稀疏解;步骤s5、根据包含角度信息的稀疏解,得到精确的估计角度。2.如权利要求1所述的投影最小最大凹函数波达方向估计方法,其特征在于,步骤s1中,根据预设天线阵列模型,获得天线阵列多重测量矩阵。3.如权利要求2所述的投影最小最大凹函数波达方向估计方法,其特征在于,步骤s4中,通过近端梯度下降法求解波达方向估计优化模型,得到包含角度信息的稀疏解。4.如权利要求3所述的投影最小最大凹函数波达方向估计方法,其特征在于,步骤s5中,根据包含角度信息的稀疏解,通过搜索谱峰位置,得到精确的估计角度。5.一种投影最小最大凹函数波达方向估计装置,其特征在于,包括:获取模块,用于获得天线阵列多重测量矩阵;分解模块,用于对天线阵列多重测量矩阵进行奇异值分解,得到降维、降噪后的多重测量矩阵;构建模块,用于根据降维、降噪后的多重测量矩阵,构建投影最小最大凹函数的波达方向估计优化模型;计算模块,用于求解波达方向估计优化模型,得到包含角度信息的稀疏解;估计模块,用于根据包含角度信息的稀疏解,得到精确的估计角度。6.如权利要求5所述的投影最小最大凹函数波达方向估计装置,其特征在于,获取模块,用于根据预设天线阵列模型,获得天线阵列多重测量矩阵。7.如权利要求6所述的投影最小最大凹函数波达方向估计装置,其特征在于,计算模块,用于通过近端梯度下降法求解波达方向估计优化模型,得到包含角度信息的稀疏解。8.如权利要求7所述的投影最小最大凹函数波达方向估计装置,其特征在于,估计模块,用于根据包含角度信息的稀疏解,通过搜索谱峰位置,得到精确的估计角度。

技术总结
本发明公开一种投影最小最大凹函数波达方向估计方法和装置,其特征在于,包括:步骤S1、获得天线阵列多重测量矩阵;步骤S2、对天线阵列多重测量矩阵进行奇异值分解,得到降维、降噪后的多重测量矩阵;步骤S3、根据降维、降噪后的多重测量矩阵,构建投影最小最大凹函数的波达方向估计优化模型;步骤S4、求解波达方向估计优化模型,得到包含角度信息的稀疏解;步骤S5、根据包含角度信息的稀疏解,得到精确的估计角度。采用本发明的技术方案,可以实现更准确的角度定位。准确的角度定位。准确的角度定位。


技术研发人员:李迎松 肖武当 沙威 余灿平 黄志祥
受保护的技术使用者:安徽大学
技术研发日:2023.07.25
技术公布日:2023/10/15
版权声明

本文仅代表作者观点,不代表航家之家立场。
本文系作者授权航家号发表,未经原创作者书面授权,任何单位或个人不得引用、复制、转载、摘编、链接或以其他任何方式复制发表。任何单位或个人在获得书面授权使用航空之家内容时,须注明作者及来源 “航空之家”。如非法使用航空之家的部分或全部内容的,航空之家将依法追究其法律责任。(航空之家官方QQ:2926969996)

航空之家 https://www.aerohome.com.cn/

航空商城 https://mall.aerohome.com.cn/

航空资讯 https://news.aerohome.com.cn/

分享:

扫一扫在手机阅读、分享本文

评论

相关推荐