肺通气、空气潴留确定方法及装置、电子设备和介质与流程
未命名
10-19
阅读:79
评论:0
1.本公开涉及dr图像处理技术领域,尤其涉及一种肺通气、空气潴留确定方法及装置、电子设备和存储介质。
背景技术:
2.数字x射线(digital x-ray,dr)影像可以提供高分辨率及实时性的x射线图像,已经广泛应用于骨骼系统、胸部、牙科等检查,如骨折诊断、肺部疾病筛查、牙齿拍片等。
3.目前,dr影像已经成为呼吸疾病诊断及分析中重要的影像设备。肺通气是肺与外界环境进行的气体交往,通过呼吸道,即鼻、咽、喉、气管、支气管、肺泡,吸入外界之清气,将机体代谢利用后的二氧化碳排出体外的过程,维持正常的氧供。在肺通气的过程中,肺通气的原动力是膈肌的收缩活动,并利用压力差(肺泡气和外界大气之间的压力差)进行换气。其中,吸气时,肺内压小于大气压;而呼气时,肺内压大于大气压。特别对于呼吸困难。例如慢性阻塞性肺病或患有呼吸困难窘迫症患者,肺通气对其具有重要意义。尤其是对于慢性阻塞性肺病患者,有效定位空气潴留区域对其用药及临床管理的意义更为突出。
4.因此,有必要基于呼吸过程中的dr肺图像,确定肺通气及空气潴留,以解决目前dr肺图像不能为慢性阻塞性肺病或患有呼吸困难窘迫症患者提供相应的肺通气及空气潴留定量分析问题,进而提升基于dr肺图像的智能辅助诊断或评估水平。
技术实现要素:
5.本公开提出了一种肺通气、空气潴留确定方法及装置、电子设备和存储介质技术方案。
6.根据本公开的一方面,提供了一种肺通气确定方法,包括:
7.获取呼吸过程中多张dr肺图像对应的左肺图像及右肺图像、呼吸过程中的多个配准变换矩阵、预设空气阈值区间;
8.利用所述呼吸过程中的多个配准变换矩阵,分别对所述多张dr肺图像对应的左肺图像及右肺图像进行配准操作,得到所述多张dr肺图像对应的左肺配准图像及右肺配准图像;
9.分别基于所述预设空气阈值区间及所述多张dr肺图像对应的左肺配准图像及右肺配准图像,确定所述呼吸过程中多时刻的多张dr肺图像对应的肺通气区域。
10.优选地,在所述获取呼吸过程中的多个配准变换矩阵之前,确定所述多个配准变换矩阵的方法,包括:
11.分别对所述呼吸过程中多张dr肺图像的相邻dr肺图像进行配准,得到对应的呼吸过程中的多个配准变换矩阵;或,
12.分别对所述呼吸过程中多张dr肺图像对应的相邻左肺图像及右肺图像进行配准,得到呼吸过程中的左肺图像对应的多个配准变换矩阵及呼吸过程中的右肺图像对应的多个配准变换矩阵;
13.进而,利用所述呼吸过程中的左肺图像对应的多个配准变换矩阵及所述呼吸过程中的右肺图像对应的多个配准变换矩阵,分别对所述多张dr肺图像对应的左肺图像及右肺图像进行配准操作,得到所述多张dr肺图像对应的左肺配准图像及右肺配准图像。
14.优选地,所述利用所述呼吸过程中的多个配准变换矩阵,分别对所述多张dr肺图像对应的左肺图像及右肺图像进行配准操作,得到所述多张dr肺图像对应的左肺配准图像及右肺配准图像的方法,包括:
15.将所述呼吸过程中第一时刻的dr肺图像配置为固定图像,并将与所述第一时刻相邻下一时刻对应的第二时刻的dr肺图像配置为浮动图像;
16.利用所述呼吸过程中的多个配准变换矩阵,分别对所述固定图像与所述浮动图像或所述固定图像对应的左肺图像及右肺图像与所述浮动图像对应的左肺图像及右肺图像进行配准操作,得到所述多张dr肺图像对应的左肺配准图像及右肺配准图像。
17.优选地,在所述获取预设空气阈值区间之前,确定所述预设空气阈值区间的方法,包括:
18.分别确定所述呼吸过程中多张dr肺图像对应的左肺图像及右肺图像对应的最小预设空气阈值;
19.基于所述最小预设空气阈值及设定阈值步长,确定所述呼吸过程中多张dr肺图像对应的左肺图像及右肺图像对应的最大预设空气阈值;以及/或,
20.所述基于所述最小预设空气阈值及设定阈值步长,确定所述呼吸过程中多张dr肺图像对应的左肺图像及右肺图像对应的最大预设空气阈值的方法,包括:
21.分别显示所述呼吸过程中多张dr肺图像对应的左肺图像及右肺图像;
22.基于所述最小预设空气阈值及设定阈值步长,对所述显示的多张dr肺图像对应的左肺图像及右肺图像进行空气标识;
23.根据所述多张dr肺图像对应的左肺图像及右肺图像的空气标识,确定所述呼吸过程中多张dr肺图像对应的左肺图像及右肺图像对应的最大预设空气阈值;以及/或,
24.所述基于所述最小预设空气阈值及设定阈值步长,在所述显示的多张dr肺图像对应的左肺图像及右肺图像进行空气标识的方法,包括:
25.基于所述最小预设空气阈值及设定阈值步长,确定待显示空气阈值区间;
26.基于所述待显示空气阈值区间,对所述显示的多张dr肺图像对应的左肺图像及右肺图像进行空气标识;以及/或,
27.所述基于所述最小预设空气阈值及设定阈值步长,确定待显示空气阈值区间的方法,包括:
28.确定所述呼吸过程中多张dr肺图像对应的左肺图像及右肺图像对应的最大像素阈值;
29.显示所述最小预设空气阈值及最大像素阈值对应的阈值滑条;
30.基于所述设定阈值步长,调节所述阈值滑条上的阈值取值,以确定待显示空气阈值区间;以及/或,
31.所述显示的多张dr肺图像对应的左肺图像及右肺图像进行空气标识的方法,包括:
32.获取所述空气标识对应的第一配置颜色和/或第一配置透明度;
33.基于所述第一配置颜色和/或第一配置透明度,对所述显示的多张dr肺图像对应的左肺图像及右肺图像进行空气标识;以及/或,
34.所述分别基于所述预设空气阈值区间及所述多张dr肺图像对应的左肺配准图像及右肺配准图像,确定所述呼吸过程中多时刻的多张dr肺图像对应的肺通气区域的方法,包括:
35.基于所述预设空气阈值区间,分别确定所述多张dr肺图像对应的空气标识区域;
36.分别基于所述多张dr肺图像对应的空气标识区域,确定所述呼吸过程中多时刻的多张dr肺图像对应的肺通气区域;以及/或,
37.对所述确定所述呼吸过程中多时刻的多张dr肺图像对应的肺通气区域进行显示的方法,包括:
38.获取所述空气标识区域对应的第一配置颜色和/或第一配置透明度;
39.分别基于所述第一配置颜色和/或第一配置透明度,对所述显示的多张dr肺图像对应的左肺图像及右肺图像中的空气标识区域进行显示。
40.优选地,在所述获取呼吸过程中多张dr肺图像对应的左肺图像及右肺图像之前,对所述呼吸过程中多张dr肺图像进行左肺及右肺分割,得到所述呼吸过程中多张dr肺图像对应的左肺图像及右肺图像;以及/或,
41.所述对所述呼吸过程中多张dr肺图像进行左肺及右肺分割,得到所述呼吸过程中多张dr肺图像对应的左肺图像及右肺图像的方法,包括:
42.所述对所述呼吸过程中多时刻的dr肺图像进行左肺及右肺分割,得到多时刻的dr左肺图像及dr右肺图像的方法,包括:分别对所述呼吸过程中多时刻的dr肺图像的左侧胸部图像和右侧胸部图像进行肋缘边界、肺尖边界及纵隔和横隔边缘检测,得到多时刻的dr左肺图像及dr右肺图像;或,
43.获取预设卷积神经网络的分割模型及用于训练所述分割模型的dr肺区标签图像;利用所述训练所述分割模型的dr肺区标签图像,对所述分割模型进行训练;基于所述训练后的分割模型,完成所述呼吸过程中多时刻的多张dr肺图像的左肺及右肺分割,得到多时刻的dr左肺图像及dr右肺图像;以及/或,所述用于训练所述分割模型的dr肺区标签图像的确定方法,包括:分别对多张dr肺区图像的左侧胸部图像和右侧胸部图像进行肋缘边界、肺尖边界及纵隔和横隔边缘检测,得到所述多张dr肺区图像对应的dr肺区标签图像;以及/或,
44.在获取呼吸过程中多张dr肺图像对应的左肺图像及右肺图像之前,分别对所述呼吸过程中多张dr肺图像对应的左肺图像及右肺图像进行肋骨抑制或肋骨消减。
45.根据本公开的一方面,提供了一种空气潴留确定方法,包括:包括或应用如上述的肺通气确定方法得到的所述呼吸过程中多时刻的多张dr肺图像对应的肺通气区域;
46.基于所述呼吸过程中多张dr肺图像对应的左肺图像及右肺图像及所述呼吸过程中多时刻的多张dr肺图像对应的肺通气区域,确定所述呼吸过程中多张dr肺图像对应的左肺图像及右肺图像的空气潴留区域;以及/或,
47.所述基于所述呼吸过程中多张dr肺图像对应的左肺图像及右肺图像及所述呼吸过程中多时刻的多张dr肺图像对应的肺通气区域,确定所述呼吸过程中多张dr肺图像对应的左肺图像及右肺图像的空气潴留区域的方法,包括:
48.基于所述呼吸过程中多张dr肺图像对应的左肺图像及右肺图像及所述呼吸过程中多时刻的多张dr肺图像对应的肺通气区域,确定所述呼吸过程中多时刻的多张dr肺图像对应的肺非通气区域;
49.基于所述预设空气阈值区间及所述肺非通气区域,确定所述呼吸过程中多张dr肺图像对应的左肺图像及右肺图像的空气潴留区域;以及/或,
50.所述基于所述呼吸过程中多张dr肺图像对应的左肺图像及右肺图像及所述呼吸过程中多时刻的多张dr肺图像对应的肺通气区域,确定所述呼吸过程中多时刻的多张dr肺图像对应的肺非通气区域的方法,包括:
51.所述呼吸过程中多张dr肺图像对应的左肺图像及右肺图像与所述呼吸过程中多时刻的多张dr肺图像对应的肺通气区域相减,得到所述呼吸过程中多时刻的多张dr肺图像对应的肺非通气区域;以及/或,
52.还包括:对所述呼吸过程中多张dr肺图像对应的左肺图像及右肺图像的空气潴留区域进行显示,包括:
53.获取所述空气潴留区域对应的第二配置颜色和/或第二配置透明度;
54.基于所述第二配置颜色和/或第二配置透明度,对所述显示的多张dr肺图像对应的左肺图像及右肺图像进行的空气潴留区域进行显示。
55.根据本公开的一方面,提供了一种肺通气确定装置,包括:获取单元,用于获取呼吸过程中多张dr肺图像对应的左肺图像及右肺图像、呼吸过程中的多个配准变换矩阵、预设空气阈值区间;
56.配准单元,用于利用所述呼吸过程中的多个配准变换矩阵,分别对所述多张dr肺图像对应的左肺图像及右肺图像进行配准操作,得到所述多张dr肺图像对应的左肺配准图像及右肺配准图像;
57.确定单元,用于分别基于所述预设空气阈值区间及所述多张dr肺图像对应的左肺配准图像及右肺配准图像,确定所述呼吸过程中多时刻的多张dr肺图像对应的肺通气区域;以及/或,
58.还包括:配准变换矩阵确定单元;
59.所述配准变换矩阵确定单元,用于在所述获取呼吸过程中的多个配准变换矩阵之前,确定所述多个配准变换矩阵;以及/或,
60.所述配准变换矩阵确定单元,包括:第一配准单元及第二配准单元;
61.所述第一配准单元,用于分别对所述呼吸过程中多张dr肺图像的相邻dr肺图像进行配准,得到对应的呼吸过程中的多个配准变换矩阵;或,
62.所述第一配准单元,用于分别对所述呼吸过程中多张dr肺图像对应的相邻左肺图像及右肺图像进行配准,得到呼吸过程中的左肺图像对应的多个配准变换矩阵及呼吸过程中的右肺图像对应的多个配准变换矩阵;
63.进而,所述第二配准单元,用于利用所述呼吸过程中的左肺图像对应的多个配准变换矩阵及所述呼吸过程中的右肺图像对应的多个配准变换矩阵,分别对所述多张dr肺图像对应的左肺图像及右肺图像进行配准操作,得到所述多张dr肺图像对应的左肺配准图像及右肺配准图像;以及/或,
64.所述第二配准单元,包括:图像配置单元及配准图像生成单元;
65.所述图像配置单元,用于将所述呼吸过程中第一时刻的dr肺图像配置为固定图像,并将与所述第一时刻相邻下一时刻对应的第二时刻的dr肺图像配置为浮动图像;
66.所述配准图像生成单元,用于利用所述呼吸过程中的多个配准变换矩阵,分别对所述固定图像与所述浮动图像或所述固定图像对应的左肺图像及右肺图像与所述浮动图像对应的左肺图像及右肺图像进行配准操作,得到所述多张dr肺图像对应的左肺配准图像及右肺配准图像;以及/或,
67.还包括:预设空气阈值区间确定单元;
68.所述预设空气阈值区间确定单元,用于在所述获取预设空气阈值区间之前,确定所述预设空气阈值区间;以及/或,
69.所述预设空气阈值区间确定单元,包括:最小预设空气阈值确定单元及最大预设空气阈值确定单元;
70.所述最小预设空气阈值确定单元,用于分别确定所述呼吸过程中多张dr肺图像对应的左肺图像及右肺图像对应的最小预设空气阈值;
71.所述最大预设空气阈值确定单元,用于基于所述最小预设空气阈值及设定阈值步长,确定所述呼吸过程中多张dr肺图像对应的左肺图像及右肺图像对应的最大预设空气阈值;以及/或,
72.所述最大预设空气阈值确定单元,包括:肺图像显示单元、空气标识单元及第一阈值确定单元;
73.所述肺图像显示单元,用于分别显示所述呼吸过程中多张dr肺图像对应的左肺图像及右肺图像;
74.所述空气标识单元,用于基于所述最小预设空气阈值及设定阈值步长,对所述显示的多张dr肺图像对应的左肺图像及右肺图像进行空气标识;
75.所述第一阈值确定单元,用于根据所述多张dr肺图像对应的左肺图像及右肺图像的空气标识,确定所述呼吸过程中多张dr肺图像对应的左肺图像及右肺图像对应的最大预设空气阈值;以及/或,
76.所述阈值确定单元,包括:待显示空气阈值区间确定单元;
77.所述待显示空气阈值区间确定单元,用于基于所述最小预设空气阈值及设定阈值步长,确定待显示空气阈值区间;
78.所述空气标识单元,用于基于所述待显示空气阈值区间,对所述显示的多张dr肺图像对应的左肺图像及右肺图像进行空气标识;以及/或,
79.所述待显示空气阈值区间确定单元,包括:最大像素阈值确定单元、阈值滑条单元及第二阈值确定单元;
80.所述最大像素阈值确定单元,用于确定所述呼吸过程中多张dr肺图像对应的左肺图像及右肺图像对应的最大像素阈值;
81.所述阈值滑条单元,用于显示所述最小预设空气阈值及最大像素阈值对应的阈值滑条;
82.所述第二阈值确定单元,用于基于所述设定阈值步长,调节所述阈值滑条上的阈值取值,以确定待显示空气阈值区间;以及/或,
83.所述空气标识单元,包括:配置获取单元及空气标识配置单元;
84.所述配置获取单元,用于获取所述空气标识对应的第一配置颜色和/或第一配置透明度;
85.所述空气标识配置单元,用于基于所述第一配置颜色和/或第一配置透明度,对所述显示的多张dr肺图像对应的左肺图像及右肺图像进行空气标识;以及/或,
86.还包括:分割单元;
87.所述分割单元,用于在所述获取呼吸过程中多时刻的dr左肺图像和/或dr右肺图像之前,获取所述呼吸过程中多时刻的dr肺图像,对所述呼吸过程中多时刻的dr肺图像进行左肺及右肺分割,得到多时刻的dr左肺图像及dr右肺图像;以及/或,
88.所述分割单元,包括:检测单元;
89.所述检测单元,用于分别对所述呼吸过程中多时刻的dr肺图像的左侧胸部图像和右侧胸部图像进行肋缘边界、肺尖边界及纵隔和横隔边缘检测,得到多时刻的二维dr左肺图像及二维dr右肺图像;或,
90.所述分割单元,包括:模型及数据获取单元、训练单元及输出单元;
91.所述模型及数据获取单元,用于获取预设卷积神经网络的分割模型及用于训练所述分割模型的dr肺区标签图像;
92.所述训练单元,用于利用所述训练所述分割模型的dr肺区标签图像,对所述分割模型进行训练;
93.所述输出单元,用于基于所述训练后的分割模型,完成所述呼吸过程中多时刻的二维dr肺图像的左肺及右肺分割,得到多时刻的dr左肺图像及dr右肺图像;以及/或,
94.所述分割单元,还包括:标签确定单元;
95.所述标签确定单元,用于分别对多张dr肺区图像的左侧胸部图像和右侧胸部图像进行肋缘边界、肺尖边界及纵隔和横隔边缘检测,得到所述多张dr肺区图像对应的dr肺区标签图像;以及/或,
96.还包括:肋骨抑制或肋骨消减单元;
97.所述肋骨抑制或肋骨消减单元,用于在获取呼吸过程中多张dr肺图像对应的左肺图像及右肺图像之前,分别对所述呼吸过程中多张dr肺图像对应的左肺图像及右肺图像进行肋骨抑制或肋骨消减。
98.根据本公开的一方面,提供了一种空气潴留确定装置,包括或应用如上述的肺通气确定方法或如上述的肺通气确定装置得到的所述呼吸过程中多时刻的多张dr肺图像对应的肺通气区域;及,
99.空气潴留区域确定单元;
100.所述空气潴留区域确定单元,用于基于所述呼吸过程中多张dr肺图像对应的左肺图像及右肺图像及所述呼吸过程中多时刻的多张dr肺图像对应的肺通气区域,确定所述呼吸过程中多张dr肺图像对应的左肺图像及右肺图像的空气潴留区域;以及/或,
101.所述空气潴留区域确定单元,包括:肺非通气区域确定单元及区域确定单元;
102.所述肺非通气区域确定单元,用于基于所述呼吸过程中多张dr肺图像对应的左肺图像及右肺图像及所述呼吸过程中多时刻的多张dr肺图像对应的肺通气区域,确定所述呼吸过程中多时刻的多张dr肺图像对应的肺非通气区域;
103.所述区域确定单元,用于基于所述预设空气阈值区间及所述肺非通气区域,确定
所述呼吸过程中多张dr肺图像对应的左肺图像及右肺图像的空气潴留区域;以及/或,
104.所述区域确定单元,包括:减法单元;
105.所述减法单元,用于所述呼吸过程中多张dr肺图像对应的左肺图像及右肺图像与所述呼吸过程中多时刻的多张dr肺图像对应的肺通气区域相减,得到所述呼吸过程中多时刻的多张dr肺图像对应的肺非通气区域;以及/或,
106.还包括:空气潴留区域显示单元;所述空气潴留区域显示单元,用于对所述呼吸过程中多张dr肺图像对应的左肺图像及右肺图像的空气潴留区域进行显示;以及/或,
107.所述空气潴留区域显示单元,包括:空气潴留区域配置获取单元及配置显示单元;
108.所述空气潴留区域配置获取单元,用于获取所述空气潴留区域对应的第二配置颜色和/或第二配置透明度;
109.所述配置显示单元,用于基于所述第二配置颜色和/或第二配置透明度,对所述显示的多张dr肺图像对应的左肺图像及右肺图像进行的空气潴留区域进行显示。
110.根据本公开的一方面,提供了一种电子设备,包括:
111.处理器;
112.用于存储处理器可执行指令的存储器;
113.其中,所述处理器被配置为:执行上述肺通气确定方法和/或空气潴留确定方法。
114.根据本公开的一方面,提供了一种计算机可读存储介质,其上存储有计算机程序指令,所述计算机程序指令被处理器执行时实现上述肺通气确定方法和/或空气潴留确定方法。
115.在本公开实施例中,本公开提出了一种肺通气、空气潴留确定方法及装置、电子设备和存储介质技术方案,以解决目前dr肺图像不能为慢性阻塞性肺病或患有呼吸困难窘迫症患者提供相应的肺通气及空气潴留定量分析问题,进而提升基于dr肺图像的智能辅助诊断或评估水平。
116.应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,而非限制本公开。
117.根据下面参考附图对示例性实施例的详细说明,本公开的其它特征及方面将变得清楚。
附图说明
118.此处的附图被并入说明书中并构成本说明书的一部分,这些附图示出了符合本公开的实施例,并与说明书一起用于说明本公开的技术方案。
119.图1示出根据本公开实施例的肺通气确定方法的流程图;
120.图2是根据一示例性实施例示出的一种电子设备800的框图;
121.图3是根据一示例性实施例示出的一种电子设备1900的框图。
具体实施方式
122.以下将参考附图详细说明本公开的各种示例性实施例、特征和方面。附图中相同的附图标记表示功能相同或相似的元件。尽管在附图中示出了实施例的各种方面,但是除非特别指出,不必按比例绘制附图。
123.在这里专用的词“示例性”意为“用作例子、实施例或说明性”。这里作为“示例性”所说明的任何实施例不必解释为优于或好于其它实施例。
124.本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,a和/或b,可以表示:单独存在a,同时存在a和b,单独存在b这三种情况。另外,本文中术语“至少一种”表示多种中的任意一种或多种中的至少两种的任意组合,例如,包括a、b、c中的至少一种,可以表示包括从a、b和c构成的集合中选择的任意一个或多个元素。
125.另外,为了更好地说明本公开,在下文的具体实施方式中给出了众多的具体细节。本领域技术人员应当理解,没有某些具体细节,本公开同样可以实施。在一些实例中,对于本领域技术人员熟知的方法、手段、元件和电路未作详细描述,以便于凸显本公开的主旨。
126.可以理解,本公开提及的上述各个肺通气确定方法、空气潴留确定方法实施例,在不违背原理逻辑的情况下,均可以彼此相互结合形成结合后的实施例,限于篇幅,本公开不再赘述。
127.此外,本公开还提供了肺通气确定装置、空气潴留确定装置、电子设备、计算机可读存储介质、程序,上述均可用来实现本公开提供的任一种肺通气确定方法、空气潴留确定方法,相应技术方案和描述和参见方法部分的相应记载,不再赘述。
128.图1示出根据本公开实施例的肺通气确定方法的流程图,如图1所示,所述肺通气确定方法,包括:步骤s101:获取呼吸过程中多张dr肺图像对应的左肺图像及右肺图像、呼吸过程中的多个配准变换矩阵、预设空气阈值区间;步骤s102:利用所述呼吸过程中的多个配准变换矩阵,分别对所述多张dr肺图像对应的左肺图像及右肺图像进行配准操作,得到所述多张dr肺图像对应的左肺配准图像及右肺配准图像;步骤s103:分别基于所述预设空气阈值区间及所述多张dr肺图像对应的左肺配准图像及右肺配准图像,确定所述呼吸过程中多时刻的多张dr肺图像对应的肺通气区域。
129.步骤s101:获取呼吸过程中多张dr肺图像对应的左肺图像及右肺图像、呼吸过程中的多个配准变换矩阵、预设空气阈值区间。其中,所述呼吸过程中多张dr肺图像为多张dr肺图像;所述呼吸过程中多张dr肺图像对应的左肺图像及右肺图像为二维dr左肺图像及二维dr右肺图像。
130.在本公开的实施例及其他可能的实施例中,数字x射线(digital x-ray,dr)影像设备可以提供高分辨率及实时性的x射线图像,已经广泛应用于骨骼系统、胸部、牙科等检查,如骨折诊断、肺部疾病筛查、牙齿拍片等。因此,可以利用dr影像设备,对骨骼系统、胸部、牙科等进行成像。
131.本公开的实施例中,在所述获取呼吸过程中或屏气状态下多时刻的二维dr左肺图像和/或二维dr右肺图像之前,获取所述呼吸过程中或屏气状态下多时刻的二维dr肺图像,对所述呼吸过程中或屏气状态下多时刻的二维dr肺图像进行左肺及右肺分割,得到多时刻的二维dr左肺图像及二维dr右肺图像。例如,可将屏气状态下多时刻的二维dr肺图像配置为多张第一dr肺图像,将所述呼吸过程中多时刻的二维dr左肺图像配置为多张第二dr肺图像。
132.在本公开的实施例中,所述对所述呼吸过程中或屏气状态下多时刻的二维dr肺图像进行左肺及右肺分割,得到多时刻的二维dr左肺图像及二维dr右肺图像的方法,包括:分别对所述呼吸过程中或屏气状态下多时刻的二维dr肺图像的左侧胸部图像和右侧胸部图
像进行肋缘边界、肺尖边界及纵隔和横隔边缘检测,得到多时刻的二维dr左肺图像及二维dr右肺图像;或,所述对所述呼吸过程中多时刻的二维dr肺图像进行左肺及右肺分割,得到多时刻的二维dr左肺图像及二维dr右肺图像的方法,包括:获取预设卷积神经网络的分割模型及用于训练所述分割模型的dr肺区标签图像;利用所述训练所述分割模型的dr肺区标签图像,对所述分割模型进行训练;基于所述训练后的分割模型,完成所述呼吸过程中多时刻的二维dr肺图像的左肺及右肺分割,得到多时刻的二维dr左肺图像及二维dr右肺图像;以及/或,所述用于训练所述分割模型的dr肺区标签图像的确定方法,包括:分别对多张dr肺区图像的左侧胸部图像和右侧胸部图像进行肋缘边界、肺尖边界及纵隔和横隔边缘检测,得到所述多张dr肺区图像对应的dr肺区标签图像。
133.在本公开的实施例中,在获取呼吸过程中多张dr肺图像对应的左肺图像及右肺图像之前,分别对所述呼吸过程中多张dr肺图像对应的左肺图像及右肺图像进行肋骨抑制或肋骨消减。
134.在本公开的实施例及其他可能的实施例中,获取待处理dr图像,并根据所述待处理dr图像确定是否为肺图像;其中,所述肺图像配置为呼吸过程中或屏气状态下多时刻的二维dr肺图像;若是所述肺图像,则对所述待处理dr图像进行胸腔检测,去除所述待处理dr图像中所述胸腔之外信息。其中,所述待处理dr图像配置为呼吸过程中或屏气状态下的多时刻的二维dr左肺图像。更为具体地说,呼吸过程中及屏气状态下的多时刻的二维dr左肺图像分别配置为多张第一dr肺图像及多张第二dr肺图像。
135.在本公开的实施例及其他可能的实施例中,所述根据所述待处理dr图像确定是否为肺图像的方法,包括:计算所述待处理dr图像对应的平均灰度值,根据所述平均灰度值及设定灰度值确定是否为肺图像。其中,本领域技术人员可根据实际需要对所述设定灰度值进行配置。例如,所述设定灰度值可配置为-1000hu至0hu之间任意一个数值或范围。同时,在本公开的实施例及其他可能的实施例中,亦可通过对所述待处理dr图像进行人工判断,以确定所述待处理dr图像确定是否为肺图像。
136.在本公开的实施例及其他可能的实施例中,所述根据所述平均灰度值及设定灰度值确定是否为肺图像的方法,包括:若所述待处理dr图像未进行取反处理,则若所述平均灰度值小于或等于设定灰度值,则确定所述待处理dr图像为肺图像;若所述待处理dr图像进行了取反处理,则若所述平均灰度值大于或等于设定灰度值,则确定所述待处理dr图像为肺图像。其原理为如果是肺图像,则肺图像内肺一般会充满或含有一定量的空气,而空气对应较小的灰度值(ct值),一般配置为-1000hu;而水的灰度值(ct值)一般配置为0hu,骨头的灰度值(ct值)一般配置为1000hu以上;因此,采用上述技术方案确定所述待处理dr图像是否为肺图像。
137.在本公开的实施例中,若是所述肺图像,则对所述待处理dr图像进行胸腔检测,去除所述待处理dr图像中所述胸腔之外信息。其中,在本公开的实施例及其他可能的实施例中,所述胸腔之外信息,包括:去除手臂、头部以及空白背景等非必要信息。
138.在本公开的实施例中,在对所述待处理dr图像(待分割肺图像或呼吸过程中或屏气状态下多时刻的二维dr肺图像)进行胸腔检测之前,对所述待处理dr图像进行滤波,并对所述滤波后的待分割肺图像进行下采样至设定尺寸。
139.在本公开的实施例中,对所述设定尺寸的待处理dr图像的对数变换进行图像增
强,得到增强的待处理dr图像。
140.(1)待处理dr图像(待分割肺图像或呼吸过程中或屏气状态下多时刻的二维dr肺图像)的图像预处理。
141.在本公开的实施例及其他可能的实施例中,a.待处理dr图像(待分割肺图像),并对待处理dr图像(待分割肺图像)进行低通滤波,对滤波后的待分割肺图像进行缩小(下采样)至设定尺寸,以加快图像的处理速度;进行下采样的待分割肺图像的对数变换进行图像增强,得到增强的待分割肺;其中,设定尺寸值的低通模板高斯滤波或均值滤波,所述设定尺寸值可配置为3
×
3或5
×
5。其中,所述缩小(下采样)的范围可以配置为2-6倍。本领域技术人员可根据实际需要对所述设定尺寸值及/或所述缩小(下采样)的范围进行配置。
142.在本公开的实施例及其他可能的实施例中,b.所述待处理dr图像进行胸腔检测的技术方案采用了根据待分割肺图像的特点自适应判定胸腔轮廓,去除手臂头部以及空白背景等非必要信息。
143.在本公开的实施例中,步骤1).所述对所述待处理dr图像进行dr图像处理的方法,包括:分别计算所述待处理dr图像中每个像素点的横方向对应的多个第一梯度幅值及每个像素点的纵方向的多个第二梯度幅值;基于所述多个第一梯度幅值及所述多个第二梯度幅值确定多个总梯度幅值;分别对横方向对应的多个第一梯度幅值及纵方向的多个第二梯度幅值沿着垂直于其方向进行积分,得到多个第一积分值及多个第二积分值;分别对所述多个总梯度幅值积分在纵方向及横方向对应的两个方向积分,得到多个第三积分值及多个第四积分值;计算所述多个第一比值对应的多个第一局部极大值,及计算所述多个第一比值及多个第二比值对应的多个第一局部极小值及多个第二局部极小值;根据所述多个第一局部极大值、所述多个第一局部极小值、所述多个第二局部极小值以及胸廓特征确定所述待处理dr图像对应的胸廓图;其中,所述胸廓特征可配置胸廓对应的颈部或肩部的第一分割位置及胸廓两侧的第二分割位置。
144.在本公开的实施例中,所述分别计算所述待处理dr图像中每个像素点的横方向对应的多个第一梯度幅值及每个像素点的纵方向的多个第二梯度幅值的方法,包括:获取梯度算子;利用所述梯度算子,分别计算所述待处理dr图像中每个像素点的横方向对应的多个第一梯度幅值及每个像素点的纵方向的多个第二梯度幅值。
145.在本公开的实施例中,所述基于所述多个第一梯度幅值及所述多个第二梯度幅值确定多个总梯度幅值的方法,包括:分别计算所述多个第一梯度幅值对应的多个第一平方和及所述多个第二梯度幅值对应的多个第二平方和,并基于所述多个第一平方和及所述多个第二平方和确定所述多个总梯度幅值;以及/或,所述基于所述多个第一平方和及所述多个第二平方和确定所述多个总梯度幅值的方法,包括:分别对所述多个第一平方和及多个所述第二平方和进行求和,对所述和进行开平方处理,得到所述多个总梯度幅值。
146.在本公开的实施例及其他可能的实施例中,分别计算待分割肺图像中每个像素点的横方向对应的多个第一梯度幅值及每个像素点的纵方向的多个第二梯度幅值;并基于所述多个第一梯度幅值及所述多个第二梯度幅值确定多个总梯度幅值;其中,所述基于所述多个第一梯度幅值及所述多个第二梯度幅值确定多个总梯度幅值的方法,包括:分别计算所述多个第一梯度幅值对应的多个第一平方和及所述多个第二梯度幅值对应的多个第二平方和,并基于所述多个第一平方和及所述多个第二平方和确定所述多个总梯度幅值。其
中,所述基于所述多个第一平方和及所述多个第二平方和确定所述多个总梯度幅值的方法,包括:分别对所述多个第一平方和及多个所述第二平方和进行求和,对所述和进行开平方处理,得到所述多个总梯度幅值。
147.例如,待分割肺图像每个像素点e及其八邻域矩阵为利用sobel梯度算子分别计算待分割肺图像中每个像素点e的横方向对应的多个第一梯度幅值(c+2*f+i-a-2*d-g)及利用sobel梯度算子的转置分别计算待分割肺图像中每个像素点e的纵方向的多个第二梯度幅值(g+2*h+i-a-2*b-c)。同时,对于本领域技术人员也可以需要实际需要选择其他梯度算子,例如roberts梯度算子或laplace梯度算子。
148.又例如,基于所述多个第一梯度幅值(h1,h2,...,hn)及所述多个第二梯度幅值(k1,k2,...,kn)确定多个总梯度幅值为
149.步骤2).分别对横方向对应的多个第一梯度幅值及纵方向的多个第二梯度幅值沿着垂直于其方向进行积分,得到多个第一积分值及多个第二积分值;
150.其中,对横方向对应的多个第一梯度幅值在纵方向积分,得到多个第一积分值;及,对纵方向对应的多个第一梯度幅值在横方向积分,得到多个第二积分值。
151.步骤3).分别对所述多个总梯度幅值积分在纵方向及横方向对应的两个方向积分,得到多个第三积分值及多个第四积分值;其中,对所述多个总梯度幅值积分在纵方向积分,得到多个第三积分值;及,对所述多个总梯度幅值积分在横方向积分,得到多个第四积分值。
152.步骤4).(a)确定多个第一局部极大值时,根据步骤2的结果与步骤3的结果计算比率,当比率小于预设值时,此位置的图像信息视为噪声,需要进行舍弃。其中,所述噪声可配置为手臂头部以及空白背景等非必要信息对应的图像信息。
153.其中,基于所述多个第一积分值及所述多个第三积分值,确定在所述横方向上所述多个第一积分值与所述多个第三积分值对应的多个第一比值中的每个第一比值是否保留。
154.其中,所述基于所述多个第一积分值及所述多个第三积分值,确定在所述横方向上所述多个第一积分值与所述多个第三积分值对应的多个第一比值中的每个第一比值是否保留的方法,包括:获取第一预设值;分别计算在所述横方向上的所述多个第一积分值与对应的所述多个第三积分值的多个第一比值;若多个第一比值中某个第一比值小于所述第一预设值,则舍弃所述某个第一比值。在本公开的实施例及其他可能的实施例中,对于本领域技术人员也可以需要实际需要对所述第一预设值进行配置。
155.(b)确定多个第一局部极小值时,根据步骤2的结果与步骤3的结果计算比率,当比率大于预设值时,此位置的图像信息视为噪声,需要进行舍弃。其中,所述噪声可配置为手臂头部以及空白背景等非必要信息对应的图像信息。
156.其中,基于所述多个第一积分值及所述多个第三积分值,确定在所述横方向上所述多个第一积分值与所述多个第三积分值对应的多个第一比值中的每个第一比值是否保留。
157.其中,所述基于所述多个第一积分值及所述多个第三积分值,确定在所述横方向上所述多个第一积分值与所述多个第三积分值对应的多个第一比值中的每个第一比值是否保留的方法,包括:获取第一预设值;分别计算在所述横方向上的所述多个第一积分值与对应的所述多个第三积分值的多个第一比值;若多个第一比值中某个第一比值大于所述第一预设值,则舍弃所述某个第一比值。
158.其中,基于所述多个第二积分值及所述多个第四积分值,确定在所述纵方向上所述多个第二积分值与所述多个第四积分值对应的多个第二比值中的每个第二比值是否保留。
159.其中,所述基于所述多个第二积分值及所述多个第四积分值,确定在所述纵方向上所述多个第二积分值与所述多个第四积分值对应的多个第二比值中的每个第二比值是否保留的方法,包括:获取第二预设值;分别计算在所述纵方向上的所述多个第二积分值与对应的所述多个第四积分值的多个第二比值;若多个第二比值中某个第二比值大于所述第二预设值,则舍弃所述某个第二比值。在本公开的实施例及其他可能的实施例中,对于本领域技术人员也可以需要实际需要对所述第二预设值进行配置。
160.在本公开的实施例中,在所述计算所述多个第一比值对应的多个第一局部极大值,及计算所述多个第一比值及多个第二比值对应的多个第一局部极小值及多个第二局部极小值之前,基于所述多个第一积分值及所述多个第三积分值,确定在所述横方向上所述多个第一积分值与所述多个第三积分值对应的多个第一比值中的每个第一比值是否保留;及,基于所述多个第二积分值及所述多个第四积分值,确定在所述纵方向上所述多个第二积分值与所述多个第四积分值对应的多个第二比值中的每个第二比值是否保留;进而,计算保留的所述多个第一比值对应的多个第一局部极大值,及计算保留的所述多个第一比值及保留的多个第二比值对应的多个第一局部极小值及多个第二局部极小值。
161.在本公开的实施例中,计算所述多个第一比值对应第一曲线的微分导数,得到所述多个第一局部极大值及所述多个第一局部极小值;及,计算所述多个第二比值对应第二曲线的微分导数,得到所述多个第二局部极小值。
162.在本公开的实施例中,所述根据多个第一局部极大值、多个第一局部极小值、多个第二局部极小值以及胸廓特征确定所述待分割肺图像对应的胸廓图的方法,包括:基于所述多个第一局部极大值及所述胸廓特征确定胸廓两侧的第二分割位置;基于所述多个第二局部极小值及所述胸廓特征确定颈部或肩部的第一分割位置;根据所述第一分割位置及所述第一分割位置,确定所述待分割肺图像对应的胸廓图。
163.在本公开的实施例及其他可能的实施例中,5).分别计算步骤4(a)的舍弃后所述多个第一比值对应的多个第一局部极大值及。同理地,分别计算步骤4(b)的舍弃后所述多个第一比值及多个第二比值对应的多个第一局部极小值及多个第二局部极小值。其中,所述舍弃后所述多个第一比值为舍弃后所保留的所述多个第一比值;同理,所述舍弃后多个第二比值为舍弃后所保留的所述多个第二比值。
164.根据多个第一局部极大值、多个第一局部极小值、多个第二局部极小值以及胸廓
特征确定所述待分割肺图像对应的胸廓图,去除手臂、头部以及空白背景等非必要信息。其中,所述胸廓特征可配置胸廓对应的颈部或肩部的第一分割位置及胸廓两侧的第二分割位置。
165.其中,所述根据多个第一局部极大值、多个第一局部极小值、多个第二局部极小值以及胸廓特征确定所述待分割肺图像对应的胸廓图的方法,包括:基于所述多个第一局部极大值及所述胸廓特征确定胸廓两侧的第二分割位置;基于所述多个第二局部极小值及所述胸廓特征确定颈部或肩部的第一分割位置;根据所述第一分割位置及所述第一分割位置,确定所述待分割肺图像对应的胸廓图。
166.其中,通过计算舍弃后的多个第一比值对应第一曲线的微分导数,得到所述多个第一局部极大值;其中,所述微分导数可配置为一阶、二阶或其他多阶微分导数。同理地,通过计算舍弃后的多个第一比值对应第一曲线的微分导数,得到所述多个第一局部极小值;其中,所述微分导数可配置为一阶、二阶或其他多阶微分导数。同理地,通过计算舍弃后的多个第二比值对应第二曲线的微分导数,得到所述多个第二局部极小值;其中,所述微分导数可配置为一阶、二阶或其他多阶微分导数。
167.在本公开的实施例中,所述基于所述多个第一局部极大值及所述胸廓特征确定胸廓两侧的第二分割位置的方法,包括:根据所述待处理dr图像的中心线,确定所述中心线一侧的所有所述多个第一局部极大值中最大值,并将所述最大值对应的位置信息配置为所述胸廓一侧对应的待确定一侧分割位置点;根据所述待处理dr图像的中心线,确定所述中心线另一侧的所有所述多个第一局部极小值中最小值,并将所述最小值对应的位置信息配置为所述胸廓另一侧对应的待确定另一侧分割位置点。
168.在本公开的实施例中,基于所述多个第二局部极小值及所述胸廓特征确定颈部或肩部的第一分割位置的方法,包括:将所述多个第二局部极小值对应的最小值对应的位置信息配置为所述颈部或肩部的第一分割位置。
169.在本公开的实施例及其他可能的实施例中,所述基于所述多个第一局部极大值及所述胸廓特征确定胸廓两侧的第二分割位置的方法,包括:根据所述待分分割图像的中心线,确定所述中心线一侧(右侧)的所有所述多个第一局部极大值中最大值,并将所述最大值对应的位置信息配置为所述胸廓一侧对应的待确定一侧分割位置点;根据所述待分分割图像的中心线,确定所述中心线另一侧(左侧)的所有所述多个第一局部极小值中最小值,并将所述最小值对应的位置信息配置为所述胸廓另一侧对应的待确定另一侧分割位置点。
170.例如,确定所述中心线一侧(右侧)的所有所述多个第一局部极大值(a1,a2,...,an)中最大值am;其中,m小于或等于n;m为所述最大值对应的位置信息(例如,某个横坐标),即所述胸廓一侧对应的待确定一侧分割位置点。同理地,,确定所述中心线另一侧(左侧)的所有所述多个第一局部极小值(b1,b2,...,bn)中最小值br,其中,r小于或等于n;r为所述最小值对应的位置信息(例如,某个横坐标)。
171.在本公开的实施例及其他可能的实施例中,基于所述多个第二局部极小值及所述胸廓特征确定颈部或肩部的第一分割位置的方法,包括:将所述多个第二局部极小值对应的最小值对应的位置信息(例如,某个纵坐标)配置为所述颈部或肩部的第一分割位置。
172.(2)肺野分割。
173.在本公开的实施例中,将所述待处理dr图像进行胸腔检测得到的胸廓图配置为待
分割肺图像;并基于所述待分割肺图像,进行左肺及右肺的分割。
174.在本公开的实施例中,将所述待分割肺图像分割成左侧胸部图像和右侧胸部图像;分别基于所述左侧胸部图像和所述右侧胸部图像,进行左肺及右肺分割。
175.在本公开的实施例中,将所述待分割肺图像分割成左侧胸部图像和右侧胸部图像;分别基于所述左侧胸部图像和所述右侧胸部图像,进行左肺及右肺分割;或,获取预设卷积神经网络的分割模型、用于训练所述分割模型的dr肺区标签图像及呼吸过程中或屏气状态下多时刻的待分割多张dr肺图像(待分割肺图像);其中,确定所述用于训练所述分割模型的dr肺区标签图像的方法,包括:分别对多张dr肺区图像的左侧胸部图像和右侧胸部图像进行肋缘边界、肺尖边界及纵隔和横隔边缘检测,得到所述多张dr肺区图像对应的dr肺区标签图像;利用所述训练所述分割模型的dr肺区标签图像,对所述分割模型进行训练;基于所述训练后的分割模型,完成所述待分割多张dr肺图像的左肺和/或右肺分割。
176.在本公开的实施例及其他可能的实施例中,所述预设卷积神经网络的分割模型配置为unet卷积神经网络或nnunet卷积神经网络或基于unet卷积神经网络改进的卷积神经网络或基于nnunet卷积神经网络改进的卷积神经网络。例如,基于unet卷积神经网络改进的卷积神经网络可配置为具有残差结构的resunet卷积神经网络。
177.在本公开的实施例及其他可能的实施例中,所述unet卷积神经网络或nnunet卷积神经网络或基于unet卷积神经网络改进的卷积神经网络或基于nnunet卷积神经网络改进的卷积神经网络,至少包括:下采样的收缩路径、上采样的扩展路径及最后的分类层。
178.在本公开的实施例及其他可能的实施例中,所述多张dr肺区图像配置为深吸气状态下或屏气状态下采集的多张dr肺区图像。
179.在本公开的实施例及其他可能的实施例中,在利用所述训练所述分割模型的dr肺区标签图像,对所述分割模型进行训练之前,对所述dr肺区标签图像进行数据增强,得到增强后的dr肺区标签图像;并利用所述增强后的dr肺区标签图像对所述分割模型进行训练。
180.在本公开的实施例及其他可能的实施例中,所述对所述dr肺区标签图像进行数据增强,得到增强后的dr肺区标签图像的方法,包括:对所述dr肺区标签图像进行空间几何变换和/或翻转和/或旋转和/或剪裁和/或缩放和/或图像移位和/或边缘填充和/或随机擦除和/或随机遮挡操作,得到增强后的dr肺区标签图像。
181.在本公开的实施例及其他可能的实施例中,所述对所述dr肺区标签图像进行数据增强,得到增强后的dr肺区标签图像的方法,还包括:随机从所述dr肺区标签图像抽取任意两张dr肺区标签图像;对所述任意两张dr肺区标签图像进行配置操作,得到对应的dr肺区标签配准图像;对所述dr肺区标签配准图像进行融合操作,得到增强后的dr肺区标签图像。
182.在本公开的实施例及其他可能的实施例中,所述对所述dr肺区标签配准图像进行融合操作,得到增强后的dr肺区标签图像的方法,包括:分别对所述dr肺区标签配准图像对应的像素值进行取最小或取最大或取均值操作,得到增强后的dr肺区标签图像。
183.c.根据所述待分割肺图像对应的胸廓图,将胸廓图分割成左侧胸部图像和右侧胸部图像两个部分,以此为基础分别对左侧胸部图像进行左肺野的分割和右侧胸部图像进行右肺野的分割。
184.在本公开的实施例中,分别基于所述左侧胸部图像和所述右侧胸部图像,进行左肺及右肺分割的方法,包括:分别对所述左侧胸部图像和所述右侧胸部图像进行肋缘边界、
肺尖边界及纵隔和横隔边缘检测;根据所述左侧胸部图像对应的肋缘边界、肺尖边界及纵隔和横隔边缘,得到左肺分割图像;根据所述右侧胸部图像对应的肋缘边界、肺尖边界及纵隔和横隔边缘,得到右肺分割图像。
185.在本公开的实施例中,所述对所述左侧胸部图像进行肋缘边界的方法,包括:利用方向导数构建所述左侧胸部图像的方向导数模板,并设置所述方向导数模板的设定加权深度;利用所述设定加权深度对应的方向导数模板,对所述左侧胸部图像进行方向导数的模板遍历,将模板遍历的结果叠加到所述左侧胸部图像中,得到左侧胸部叠加图像;对所述左侧胸部叠加图像进行二值化处理,得到左侧肋缘二值图;根据所述左侧肋缘二值图及所述左侧胸部叠加图像,得到待筛选左侧的肋缘角度图;基于所述待筛选左侧的肋缘角度图及第一设定肋缘角度得到筛选后的左侧肋缘角度图;对所述左侧肋缘角度图进行连通域选择,得到最大连通域对应的肋缘边界。
186.在本公开的实施例中,所述根据所述左侧肋缘二值图及所述左侧胸部叠加图像,得到待筛选左侧的肋缘角度图的方法,包括:对左侧肋缘二值图进行形态学的开闭运算及细化处理,得到形态学处理后的左侧肋缘二值图;对形态学处理后的左侧肋缘二值图及所述左侧胸部叠加图像中每个像素的梯度方向角度进行做与操作运算,得到待筛选左侧的肋缘角度图。
187.在本公开的实施例中,在所述利用方向导数构建所述左侧胸部图像的方向导数模板之前,对所述左侧胸部图像进行设定尺度高斯模糊,得到对应的左侧胸部高斯模糊图像;进而,利用方向导数构建所述左侧胸部高斯模糊图像的方向导数模板;在所述对所述左侧胸部图像进行肋缘边界过程中,利用所述设定加权深度对应的方向导数模板,对所述左侧胸部高斯模糊图像进行方向导数的模板遍历,将模板遍历的结果叠加到所述左侧胸部图像中,得到左侧胸部高斯模糊叠加图像;对所述左侧胸部高斯模糊叠加图像进行二值化处理,得到左侧肋缘二值图;根据所述左侧肋缘二值图及所述左侧胸部高斯模糊叠加图像,得到待筛选左侧的肋缘角度图。
188.a.在本公开的实施例及其他可能的实施例中,以左侧胸部图像为例进行肺野分割步骤如下。例如,左侧胸部图像的肋缘边界检测。
189.1).对左侧胸部区域(图像)进行设定尺度高斯模糊,降低此左侧胸部区域(图像)细节信息,得到对应的处理后的左侧胸部高斯模糊图像。其中,所述设定尺度可配置为7
×
7或9
×
9,同时本领域技术人员可根据实际需要对所述设定尺度进行配置。其中,高斯模糊算法的均方差可配置为2、2.5、3等数值,同时本领域技术人员可根据实际需要对所述高斯模糊算法的均方差σ进行配置。
190.2).利用方向导数构建处理后左侧胸部高斯模糊图像f(x0,y0)的方向导数模板,并设置所述方向导数模板的设定加权深度。其中,(x0,y0)分别为左侧胸部图像f(x0,y0)对应的坐标点内的横坐标x0及纵坐标y0。
191.其中,方向导数的计算公式如下:
[0192][0193]
其中,l为方向上的单位向量,cosα和cosβ是l方向余弦。其中,所述方向可配置为水平方向,α为l方向与水平方向形成的角度,β为l方向与竖直方向形成的角度。
[0194]
其中,所述利用方向导数构建处理后左侧胸部高斯模糊图像f(x0,y0)的方向导数模板的方法,包括:获取设定模板半径r对应的在x0方向上的第一半径及在y0方向上的第二半径基于所述第一半径及所述第二半径利用方向导数构建处理后左侧胸部高斯模糊图像f(x0,y0)的方向导数模板。
[0195][0196]
其中,
[0197][0198]
例如,所述设定模板半径可配置为1、2、3、4、5等。本领域技术人员可根据实际需要对所述设定模板半径进行配置。
[0199]
又例如,在x0方向上的第一半径配置为-1或0或1时,在y0方向上的第二半径的取值范围为-1、0及1。
[0200]
其中,本领域技术人员可根据实际需要对所述设定加权深度进行配置,例如所述设定加权深度可配置为6。另外,所述设置所述方向导数模板的设定加权深度的方法,包括:获取设定加权深度,所述设定加权深度乘以所述方向导数模板,得到设定加权深度对应的方向导数模板。根据肋缘区域的结构特点,合理设定方向角度范围,带入到方向导数计算公式中,获取模板数组。
[0201]
3).利用设定加权深度对应的方向导数模板,对步骤a.1的处理后的左侧胸部高斯模糊图像进行方向导数的模板遍历,将模板遍历的结果叠加(对应的像素相加)到步骤1的左侧胸部高斯模糊图像中,得到左侧胸部高斯模糊叠加图像。
[0202]
例如,左侧胸部高斯模糊图像每个像素点e及其八邻域矩阵为利用设定加权深度对应的方向导数模板分别计算每个像素点e叠加值(e+w*(c+2*f+i-a-2*d-g))。
[0203]
4).对步骤a.3的结果(左侧胸部高斯模糊叠加图像)进行最大类间方差的二值化处理,得到肋缘二值图。
[0204]
5).对步骤a.4的结果(肋缘二值图)进行形态学的开闭运算及细化处理,得到形态学处理后的肋缘二值图。
[0205]
6).分别对步骤a.3的结果(左侧胸部高斯模糊叠加图像)进行横向梯度及纵向梯度计算,得到横向梯度图及纵向梯度图;基于横向梯度图及纵向梯度图,计算得到左侧胸部高斯模糊叠加图像中每个像素的梯度方向角度。
[0206]
7).将步骤a.5的结果(形态学处理后的肋缘二值图)与步骤a.6的结果(左侧胸部高斯模糊叠加图像中每个像素的梯度方向角度)做与操作运算,得到待筛选肋缘角度图。
[0207]
8).根据肋缘组织的特征设定合理的角度范围(第一设定肋缘角度范围),对步骤a.7中获取的结果(待筛选肋缘角度图)进行角度筛选,得到筛选后的肋缘角度图。
[0208]
9).根据步骤a.8中的结果(筛选后的肋缘角度图)进行连通域选择,得到最大连通
域,则此连通域即为肋缘部分(肋缘边界)。
[0209]
同理地,在本公开的实施例中,所述对所述右侧胸部图像进行肋缘边界的方法,包括:利用方向导数构建所述右侧胸部图像的方向导数模板,并设置所述方向导数模板的设定加权深度;利用所述设定加权深度对应的方向导数模板,对所述右侧胸部图像进行方向导数的模板遍历,将模板遍历的结果叠加到所述右侧胸部图像中,得到右侧胸部叠加图像;对所述右侧胸部叠加图像进行二值化处理,得到右侧肋缘二值图;根据所述右侧肋缘二值图及所述右侧胸部叠加图像,得到待筛选右侧的肋缘角度图;基于所述待筛选右侧的肋缘角度图及第二设定肋缘角度得到筛选后的右侧肋缘角度图;对所述右侧肋缘角度图进行连通域选择,得到最大连通域对应的肋缘边界。
[0210]
同理地,在本公开的实施例中,所述根据所述右侧肋缘二值图及所述右侧胸部叠加图像,得到待筛选右侧的肋缘角度图的方法,包括:对右侧肋缘二值图进行形态学的开闭运算及细化处理,得到形态学处理后的右侧肋缘二值图;对形态学处理后的右侧肋缘二值图及所述右侧胸部叠加图像中每个像素的梯度方向角度进行做与操作运算,得到待筛选右侧的肋缘角度图。
[0211]
同理地,在本公开的实施例中,在所述利用方向导数构建所述右侧胸部图像的方向导数模板之前,对所述右侧胸部图像进行设定尺度高斯模糊,得到对应的右侧胸部高斯模糊图像;进而,利用方向导数构建所述右侧胸部高斯模糊图像的方向导数模板;在所述对所述右侧胸部图像进行肋缘边界过程中,利用所述设定加权深度对应的方向导数模板,对所述右侧胸部高斯模糊图像进行方向导数的模板遍历,将模板遍历的结果叠加到所述右侧胸部图像中,得到右侧胸部高斯模糊叠加图像;对所述右侧胸部高斯模糊叠加图像进行二值化处理,得到右侧肋缘二值图;根据所述右侧肋缘二值图及所述右侧胸部高斯模糊叠加图像,得到待筛选右侧的肋缘角度图。
[0212]
b.肺尖边界检测。在本公开的实施例中,所述对所述左侧胸部图像进行左肺尖边界检测的方法,包括:根据所述左侧胸部图像确定左肺肺尖检测区域;根据所述左肺肺尖检测区域,确定左肺肺尖边缘二值图;根据所述左肺肺尖边缘二值图,采用二次函数拟合,得到拟合后的左肺尖边界。
[0213]
在本公开的实施例中,所述根据所述左侧胸部图像确定左肺肺尖检测区域的方法,包括:检测所述左侧胸部图像的肋缘最上侧坐标点对应的第一坐标;所述第一坐标与所述左侧胸部图像最右上角的坐标点组成斜边构成的区域配置为左肺肺尖检测区域。
[0214]
在本公开的实施例及其他可能的实施例中,1).检测的左侧胸部图像的肋缘部分最上侧坐标点对应的坐标。2).此坐标点与所述左侧胸部图像最右上角的坐标点组成斜边构成的矩形区域为肺尖检测区域。如对右肺对应的肺尖检测区域,则肋缘部分最上侧坐标点对应的坐标与所述右侧胸部图像最左上角的坐标点组成斜边构成的矩形区域为右肺对应肺尖检测区域。3).对步骤b.2中获取的肺尖区域进行设定尺度高斯滤波和对比度增强,得到滤波增强肺尖区域图像。4).根据肺尖边缘的角度特点,基于滤波增强肺尖区域图像,采用与步骤a.2至a.5步骤相同的方法确定左肺肺尖边缘二值图。其中,所述肺尖边缘的角度特点配置为设定角度范围。5).根据肺尖边缘的特征以及左肺肺尖边缘二值图,采用二次函数的霍夫空间参数拟合,得到拟合后的肺尖边缘(线)。其中,所述肺尖边缘的特征为开口向下的二次函数。
[0215]
同理地,在本公开的实施例中,所述对所述右侧胸部图像进行右肺尖边界检测的方法,包括:根据所述右侧胸部图像确定右肺肺尖检测区域;根据所述右肺肺尖检测区域,确定右肺肺尖边缘二值图;根据所述右肺肺尖边缘二值图,采用二次函数拟合,得到拟合后的右肺尖边界。
[0216]
同理地,在本公开的实施例中,所述根据所述右侧胸部图像确定右肺肺尖检测区域的方法,包括:检测所述右侧胸部图像的肋缘最上侧坐标点对应的第二坐标;所述第二坐标与所述左侧胸部图像最左上角的坐标点组成斜边构成的区域配置为右肺肺尖检测区域。
[0217]
c.纵隔和横隔边缘检测。在本公开的实施例中,分别对所述左侧胸部图像进行左肺纵隔和横隔边缘检测的方法,包括:对所述左侧胸部图像进二值化处理,得到左侧胸部二值图像;对所述左侧胸部二值图像进行边缘检测,得到左侧胸部边缘二值图;根据所述左侧胸部二值图像及所述左侧胸部边缘二值图中每个像素的梯度方向角度,得到左侧胸部边缘角度图;根据所述得到左侧胸部边缘角度图及设定横隔和纵隔的边缘角度范围,得到选择后的左侧横隔和纵隔边缘角度图;根据所述选择后的左侧横隔和纵隔边缘角度图进行连通域选择处理,获取最大连通域对应的左肺纵隔和横隔边缘。
[0218]
在本公开的实施例中,所述对所述左侧胸部图像进二值化处理,得到左侧胸部二值图像的方法,包括:对所述左侧胸部图像对应的左侧胸部高斯模糊图像进行对比度增强处理及最大类间方差处理,得到左侧胸部二值图像。
[0219]
在本公开的实施例中,确定所述左侧胸部边缘二值图中每个像素的梯度方向角度的方法,包括:对所述左侧胸部图像对应的左侧胸部高斯模糊图像进行横向梯度及纵向梯度计算,得到左侧胸部的横向梯度图及纵向梯度图;基于所述左侧胸部的横向梯度图及纵向梯度图,得到左侧胸部高斯模糊图像中每个像素的梯度方向角度。
[0220]
在本公开的实施例及其他可能的实施例中,对所述左侧胸部图像进行左肺纵隔和横隔边缘检测方法,包括:1).对步骤a.1中得到的处理后的左侧胸部高斯模糊图像进行对比度增强处理及最大类间方差处理,得到左侧胸部二值图像;2).对步骤c.1的结果(左侧胸部二值图像)依次进行形态学的开闭运算和canny边缘检测,得到左侧胸部边缘二值图;3).对步骤a.1中得到的处理后的左侧胸部高斯模糊图像进行横向梯度及纵向梯度计算,得到横向梯度图及纵向梯度图;基于横向梯度图及纵向梯度图,计算得到左侧胸部高斯模糊图像中每个像素的梯度方向角度;4).对步骤c.1得到的左侧胸部二值图像和c.2得到的左侧胸部边缘二值图进行与操作运算,保留边缘像素点上的角度,得到左侧胸部边缘角度图;5).根据横隔和纵隔的边缘特点选择合适的角度范围(设定横隔和纵隔的边缘角度范围),去除所述左侧胸部边缘角度图中杂散组织边缘信息,得到选择后的左侧横隔和纵隔边缘角度图;6).根据c.5的结果(选择后的左侧横隔和纵隔边缘角度图)进行连通域选择处理,获取最大连通域,即为横隔和纵隔边缘区域。
[0221]
同理地,在本公开的实施例中,分别对所述右侧胸部图像进行右肺纵隔和横隔边缘检测的方法,包括:对所述右侧胸部图像进二值化处理,得到右侧胸部二值图像;对所述右侧胸部二值图像进行边缘检测,得到右侧胸部边缘二值图;根据所述右侧胸部二值图像及所述右侧胸部边缘二值图中每个像素的梯度方向角度,得到右侧胸部边缘角度图;根据所述得到右侧胸部边缘角度图及设定横隔和纵隔的边缘角度范围,得到选择后的右侧横隔和纵隔边缘角度图;根据所述选择后的右侧横隔和纵隔边缘角度图进行连通域选择处理,
获取最大连通域对应的右肺纵隔和横隔边缘。
[0222]
同理地,在本公开的实施例中,所述对所述右侧胸部图像进二值化处理,得到右侧胸部二值图像的方法,包括:对所述右侧胸部图像对应的右侧胸部高斯模糊图像进行对比度增强处理及最大类间方差处理,得到右侧胸部二值图像。
[0223]
同理地,在本公开的实施例中,确定所述右侧胸部边缘二值图中每个像素的梯度方向角度的方法,包括:对所述右侧胸部图像对应的右侧胸部高斯模糊图像进行横向梯度及纵向梯度计算,得到右侧胸部的横向梯度图及纵向梯度图;基于所述右侧胸部的横向梯度图及纵向梯度图,得到右侧胸部高斯模糊图像中每个像素的梯度方向角度。
[0224]
(3)横纵膈边缘,肺尖和肋缘的连接。在本公开的实施例中,所述根据所述左侧胸部图像对应的肋缘边界、肺尖边界及纵隔和横隔边缘,得到左肺分割图像的方法,包括:计算所述左侧胸部图像中肺尖边界与纵隔边缘的最短距离对应的第一左肺尖边缘点及左肺纵隔边缘点;计算所述左侧胸部图像中肺尖边界与肋缘边缘的最短距离对应的第二左肺尖边缘点及第一左肺肋缘边缘点;计算所述左侧胸部图像中肋缘边界与横隔边缘的最短距离对应的第二肋缘边缘点及横膈边缘点;基于所述第一左肺尖边缘点、左肺纵隔边缘点、第二左肺尖边缘点、第一左肺肋缘边缘点、第二肋缘边缘点及横膈边缘点,得到左肺分割图像。
[0225]
同理地,在本公开的实施例中,所述根据所述右侧胸部图像对应的肋缘边界、肺尖边界及纵隔和横隔边缘,得到右肺分割图像的方法,包括:计算所述右侧胸部图像中肺尖边界与纵隔边缘的最短距离对应的第一右肺尖边缘点及右肺纵隔边缘点;计算所述右侧胸部图像中肺尖边界与肋缘边缘的最短距离对应的第二右肺尖边缘点及第一右肺肋缘边缘点;计算所述右侧胸部图像中肋缘边界与横隔边缘的最短距离对应的第二肋缘边缘点及横膈边缘点;基于所述第一右肺尖边缘点、右肺纵隔边缘点、第二右肺尖边缘点、第一右肺肋缘边缘点、第二肋缘边缘点及横膈边缘点,得到右肺分割图像。
[0226]
在本公开的实施例及其他可能的实施例中,横纵膈边缘,肺尖和肋缘的连接的方法,包括:a.计算肺尖边缘(线)与纵隔边缘(线)之间欧几里得距离最短的两个点(第一肺尖边缘点及纵隔边缘点),此两点即分别为肺尖和横纵膈边界的端点之一;b.计算获取肺尖边缘(线)与肋缘边缘(线)之间欧几里得距离最短的两个点(第二肺尖边缘点及第一肋缘边缘点),此两点即分别为肺尖和肋缘的端点之一,根据步骤a得到的另一个肺尖端点即可得到肺尖区域边界;c.计算获取肋缘(线)与横膈边缘(线)之间欧几里得距离最短的两个点(第二肋缘边缘点及横膈边缘点),此两点即分别为肋缘与横纵膈的端点之一,根据步骤a得到的另一个横纵膈边界的端点即可获取横纵膈边界区域,根据步骤b得到的另一个肋缘端点即可得到肋缘的边界区域;d.将上述步骤abc获取的三个部分的边缘区域连接起来,即得到闭合的肺野轮廓,根据轮廓边界内外组织的不同,即可分割出肺野区域;e.右侧肺野区域按上述同样方式处理,最后将肺野区域映射到原始图中即可获取原始图的肺野分割。
[0227]
在本公开的实施例及其他可能的实施例中,本领域技术人员可根据实际需要对所述预设空气阈值区间进行配置。同时,本公开提出了一种确定所述预设空气阈值区间的方法,在所述获取预设空气阈值区间之前,确定所述预设空气阈值区间的方法,包括:分别确定所述呼吸过程中多张dr肺图像对应的左肺图像及右肺图像对应的最小预设空气阈值;基于所述最小预设空气阈值及设定阈值步长,确定所述呼吸过程中多张dr肺图像对应的左肺图像及右肺图像对应的最大预设空气阈值。
[0228]
在本公开的实施例及其他可能的实施例中,本领域技术人员可根据实际需要对所述设定阈值步长进行配置。例如,2、3、5、10等。同时,将确定所述呼吸过程中多张dr肺图像对应的左肺图像及右肺图像对应的最小像素阈值配置为所述最小预设空气阈值。
[0229]
在本公开的实施例中,所述基于所述最小预设空气阈值及设定阈值步长,确定所述呼吸过程中多张dr肺图像对应的左肺图像及右肺图像对应的最大预设空气阈值的方法,包括:分别显示所述呼吸过程中多张dr肺图像对应的左肺图像及右肺图像;基于所述最小预设空气阈值及设定阈值步长,对所述显示的多张dr肺图像对应的左肺图像及右肺图像进行空气标识;根据所述多张dr肺图像对应的左肺图像及右肺图像的空气标识,确定所述呼吸过程中多张dr肺图像对应的左肺图像及右肺图像对应的最大预设空气阈值。
[0230]
在本公开的实施例及其他可能的实施例中,所述基于所述最小预设空气阈值及设定阈值步长,对所述显示的多张dr肺图像对应的左肺图像及右肺图像进行空气标识的方法,包括:获取累加次数k;其中,所述累加次数k≥1;所述最小预设空气阈值加上k*设定阈值步长,得到不同的累加次数k对应的多张dr肺图像对应的左肺图像及右肺图像;以对所述显示的多张dr肺图像对应的左肺图像及右肺图像进行空气标识。
[0231]
在本公开的实施例中,所述基于所述最小预设空气阈值及设定阈值步长,在所述显示的多张dr肺图像对应的左肺图像及右肺图像进行空气标识的方法,包括:基于所述最小预设空气阈值及设定阈值步长,确定待显示空气阈值区间;基于所述待显示空气阈值区间,对所述显示的多张dr肺图像对应的左肺图像及右肺图像进行空气标识。
[0232]
在本公开的实施例及其他可能的实施例中,所述基于所述最小预设空气阈值及设定阈值步长,确定待显示空气阈值区间的方法,包括:获取累加次数k;其中,所述累加次数k≥1;所述最小预设空气阈值加上k*设定阈值步长,得到不同的累加次数k对应的待显示空气阈值区间;进而基于所述待显示空气阈值区间,对所述显示的多张dr肺图像对应的左肺图像及右肺图像进行空气标识。
[0233]
在本公开的实施例中,所述基于所述最小预设空气阈值及设定阈值步长,确定待显示空气阈值区间的方法,包括:确定所述呼吸过程中多张dr肺图像对应的左肺图像及右肺图像对应的最大像素阈值;显示所述最小预设空气阈值及最大像素阈值对应的阈值滑条;基于所述设定阈值步长,调节所述阈值滑条上的阈值取值,以确定待显示空气阈值区间。其中,所述待显示空气阈值区间配置为所述最小预设空气阈值与调节所述阈值滑条后的所述阈值滑条上空气阈值之间对应的阈值区间。
[0234]
在本公开的实施例中,所述显示的多张dr肺图像对应的左肺图像及右肺图像进行空气标识的方法,包括:获取所述空气标识对应的第一配置颜色和/或第一配置透明度;基于所述第一配置颜色和/或第一配置透明度,对所述显示的多张dr肺图像对应的左肺图像及右肺图像进行空气标识。
[0235]
步骤s102:利用所述呼吸过程中的多个配准变换矩阵,分别对所述多张dr肺图像对应的左肺图像及右肺图像进行配准操作,得到所述多张dr肺图像对应的左肺配准图像及右肺配准图像。
[0236]
在本公开的实施例中,所述利用所述呼吸过程中的多个配准变换矩阵,分别对所述多张dr肺图像对应的左肺图像及右肺图像进行配准操作,得到所述多张dr肺图像对应的左肺配准图像及右肺配准图像的方法,包括:将所述呼吸过程中第一时刻的dr肺图像配置
为固定图像,并将与所述第一时刻相邻下一时刻对应的第二时刻的dr肺图像配置为浮动图像;利用所述呼吸过程中的多个配准变换矩阵,分别对所述固定图像与所述浮动图像或所述固定图像对应的左肺图像及右肺图像与所述浮动图像对应的左肺图像及右肺图像进行配准操作,得到所述多张dr肺图像对应的左肺配准图像及右肺配准图像。
[0237]
在本公开的实施例中,在所述获取呼吸过程中的多个配准变换矩阵之前,确定所述多个配准变换矩阵的方法,包括:分别对所述呼吸过程中多张dr肺图像的相邻dr肺图像进行配准,得到对应的呼吸过程中的多个配准变换矩阵。或,在所述获取呼吸过程中的多个配准变换矩阵之前,确定所述多个配准变换矩阵的方法,包括:分别对所述呼吸过程中多张dr肺图像对应的相邻左肺图像及右肺图像进行配准,得到呼吸过程中的左肺图像对应的多个配准变换矩阵及呼吸过程中的右肺图像对应的多个配准变换矩阵。进而,利用所述呼吸过程中的左肺图像对应的多个配准变换矩阵及所述呼吸过程中的右肺图像对应的多个配准变换矩阵,分别对所述多张dr肺图像对应的左肺图像及右肺图像进行配准操作,得到所述多张dr肺图像对应的左肺配准图像及右肺配准图像。
[0238]
在本公开的实施例及其他可能的实施例中,本公开使用的所述配准方法,可以采用现有的配准算法或模型,例如sift(scale-invariant feature transform)配准算法或模型、surf(speeded up robust features)配准算法或模型、orb(oriented fast and rotated brief)配准算法或模型等的一种或几种,或其他基于卷积神经网络的配准算法或模型。例如,基于卷积神经网络的配准算法或模型可配置为基于vgg网络的配准算法或模型。
[0239]
步骤s103:分别基于所述预设空气阈值区间及所述多张dr肺图像对应的左肺配准图像及右肺配准图像,确定所述呼吸过程中多时刻的多张dr肺图像对应的肺通气区域。
[0240]
在本公开的实施例中,所述分别基于所述预设空气阈值区间及所述多张dr肺图像对应的左肺配准图像及右肺配准图像,确定所述呼吸过程中多时刻的多张dr肺图像对应的肺通气区域的方法,包括:基于所述预设空气阈值区间,分别确定所述多张dr肺图像对应的空气标识区域;分别基于所述多张dr肺图像对应的空气标识区域,确定所述呼吸过程中多时刻的多张dr肺图像对应的肺通气区域。
[0241]
在本公开的实施例及其他可能的实施例中,所述基于所述预设空气阈值区间,分别确定所述多张dr肺图像对应的空气标识区域的方法,包括:若所述多张dr肺图像对应的像素值在所述预设空气阈值区间内,则将在所述预设空气阈值区间内像素值所在区域确定为所述多张dr肺图像对应的空气标识区域。
[0242]
在本公开的实施例中,对所述确定所述呼吸过程中多时刻的多张dr肺图像对应的肺通气区域进行显示的方法,包括:获取所述空气标识区域对应的第一配置颜色和/或第一配置透明度;分别基于所述第一配置颜色和/或第一配置透明度,对所述显示的多张dr肺图像对应的左肺图像及右肺图像中的空气标识区域进行显示。
[0243]
在本公开的实施例及其他可能的实施例中,本领域技术人员可根据实际需要对所述第一配置颜色和/或第一配置透明度进行配置。例如,所述第一配置颜色可配置为蓝色系;同时,所述第一配置透明度配置为50%。
[0244]
另外,本公开的实施例还提出了空气潴留确定方法,包括或应用如上述的肺通气确定方法得到的所述呼吸过程中多时刻的多张dr肺图像对应的肺通气区域;基于所述呼吸
过程中多张dr肺图像对应的左肺图像及右肺图像及所述呼吸过程中多时刻的多张dr肺图像对应的肺通气区域,确定所述呼吸过程中多张dr肺图像对应的左肺图像及右肺图像的空气潴留区域。
[0245]
在本公开的实施例中,所述基于所述呼吸过程中多张dr肺图像对应的左肺图像及右肺图像及所述呼吸过程中多时刻的多张dr肺图像对应的肺通气区域,确定所述呼吸过程中多张dr肺图像对应的左肺图像及右肺图像的空气潴留区域的方法,包括:基于所述呼吸过程中多张dr肺图像对应的左肺图像及右肺图像及所述呼吸过程中多时刻的多张dr肺图像对应的肺通气区域,确定所述呼吸过程中多时刻的多张dr肺图像对应的肺非通气区域;基于所述预设空气阈值区间及所述肺非通气区域,确定所述呼吸过程中多张dr肺图像对应的左肺图像及右肺图像的空气潴留区域。
[0246]
在本公开的实施例中,所述基于所述呼吸过程中多张dr肺图像对应的左肺图像及右肺图像及所述呼吸过程中多时刻的多张dr肺图像对应的肺通气区域,确定所述呼吸过程中多时刻的多张dr肺图像对应的肺非通气区域的方法,包括:所述呼吸过程中多张dr肺图像对应的左肺图像及右肺图像与所述呼吸过程中多时刻的多张dr肺图像对应的肺通气区域相减,得到所述呼吸过程中多时刻的多张dr肺图像对应的肺非通气区域;并将所述呼吸过程中多时刻的多张dr肺图像对应的肺非通气区域配置为所述呼吸过程中多张dr肺图像对应的左肺图像及右肺图像的空气潴留区域。
[0247]
在本公开的实施例中,还包括:对所述呼吸过程中多张dr肺图像对应的左肺图像及右肺图像的空气潴留区域进行显示,包括:获取所述空气潴留区域对应的第二配置颜色和/或第二配置透明度;基于所述第二配置颜色和/或第二配置透明度,对所述显示的多张dr肺图像对应的左肺图像及右肺图像进行的空气潴留区域进行显示。
[0248]
在本公开的实施例及其他可能的实施例中,本领域技术人员可根据实际需要对所述第二配置颜色和/或第二配置透明度进行配置。例如,所述第二配置颜色可配置为黄色系;同时,所述第二配置透明度配置为50%。
[0249]
在本公开的实施例及其他可能的实施例中,所述肺通气确定方法和/或空气潴留确定方法,还包括:获取屏气状态下多时刻的多张第一dr肺图像对应的左肺图像及右肺图像;分别确定多张所述左肺图像及右肺图像对应的肺血管区域图像;对所述多张所述左肺图像及右肺图像对应的肺血管区域图像进行剪影处理,得到随心脏跳动对应的肺血流图像。
[0250]
本公开的实施例中,在所述获取呼吸过程中或屏气状态下多时刻的二维dr左肺图像和/或二维dr右肺图像之前,获取所述呼吸过程中或屏气状态下多时刻的二维dr肺图像,对所述呼吸过程中或屏气状态下多时刻的二维dr肺图像进行左肺及右肺分割,得到多时刻的二维dr左肺图像及二维dr右肺图像。
[0251]
分别确定多张所述左肺图像及右肺图像对应的肺血管区域图像。
[0252]
在本公开的实施例中,所述分别确定多张所述左肺图像及右肺图像对应的肺血管区域图像的方法,包括:获取最大密度投影算法或最大密度投影模型;利用所述最大密度投影算法或所述最大密度投影模型,分别确定多张所述左肺图像及右肺图像对应的肺血管区域图像。
[0253]
在本公开的实施例中,在所述利用所述最大密度投影算法或所述最大密度投影模
型,分别确定多张所述左肺图像及右肺图像对应的肺血管区域图像之前,获取高斯模糊算法或高斯模糊模型;分别利用所述高斯模糊算法或所述高斯模糊模型,对所述多张第一dr肺图像对应的左肺图像及右肺图像进行高斯模糊处理,得到对应的多张高斯模糊左肺图像及多张高斯模糊右肺图像;利用所述最大密度投影算法或所述最大密度投影模型,分别确定多张高斯模糊左肺图像及多张高斯模糊右肺图像对应的肺血管区域图像。
[0254]
在本公开的实施例及其他可能的实施例中,最大密度投影(maximum intensity projection,mip)在屏气状态下多时刻的多张第一dr肺图像中同一个位置的像素点在不同帧图像取最大值,所有多张第一dr肺图像的像素点的最大值集合可确定多张所述左肺图像及右肺图像对应的肺血管区域图像。因此,在确定了多张所述左肺图像及右肺图像对应的肺血管区域图像,即可进步基于肺血管区域图像中的血管进行肺血流分析。
[0255]
步骤s103:对所述多张所述左肺图像及右肺图像对应的肺血管区域图像进行剪影处理,得到随心脏跳动对应的肺血流图像。其中,所述随心脏跳动对应的肺血流图像,包括:肺血流对应的分布图像和/或流速图像的一种或几种。
[0256]
在本公开的实施例及其他可能的实施例中,由于是在屏气状态下采集的多时刻多张第一dr肺图像,因此认为多时刻多张第一dr肺图对应的左肺面积及右肺面积不会变化,同时多时刻多张第一dr肺图对应的左肺及右肺内气流也没有相应变化,而在屏气过程中,心脏会跳动,可得到随心脏跳动对应的肺血流对应的分布图像和/或流速图像。
[0257]
在本公开的实施例及其他可能的实施例中,在很难通过观察图像来评估这些变化时,图像减影是识别像素值微小变化的方法,通过和多时刻多张第一dr肺图像的帧与帧之间的图像减影和特定图像之间的图像减影,可得到随心脏跳动对应的肺血流对应的分布图像和/或流速图像。
[0258]
在本公开的实施例中,所述对所述多张所述左肺图像及右肺图像对应的肺血管区域图像进行剪影处理,得到随心脏跳动对应的肺血流图像的方法,包括:将所述多时刻中心脏收缩期后的心脏舒张期开始时刻对应的肺血管区域图像配置为第一基础图像,并将所述某一时刻之外的其他时刻对应的肺血管区域图像配置为多个第一待处理图像;将所述多个第一待处理图像分别减去所述第一基础图像,得到随心脏跳动对应的肺血流分布图像。
[0259]
在本公开的实施例中,所述对所述多张所述左肺图像及右肺图像对应的肺血管区域图像进行剪影处理,得到随心脏跳动对应的肺血流图像的方法,还包括:分别对所述多时刻的多张第一dr肺图像对应的左肺图像及右肺图像中相邻时刻的肺血管区域图像进行剪影处理,得到随心脏跳动对应的肺血流流速图。其中,所述分别对所述多时刻的多张第一dr肺图像对应的左肺图像及右肺图像中相邻时刻的肺血管区域图像进行剪影处理,得到随心脏跳动对应的肺血流流速图的方法,包括:分别对多张所述左肺图像及右肺图像中相邻的肺血管区域图像进行相减,得到随心脏跳动对应的肺血流流速图。
[0260]
在本公开的实施例中,所述对所述多张所述左肺图像及右肺图像对应的肺血管区域图像进行剪影处理,得到随心脏跳动对应的肺血流图像的方法,还包括:将所述多时刻中心脏收缩期内或心脏舒张期内的任意一时刻对应的肺血管区域图像配置为第二基础图像,并将所述任意一时刻之外的所述心脏收缩期内或所述心脏舒张期内其他时刻对应的肺血管区域图像配置为多个第二待处理图像;将所述多个第二待处理图像分别减去所述第二基础图像,得到随心脏跳动对应的心脏收缩期肺血流分布图像或心脏舒张期肺血流分布图
像。其中,所述多时刻配置为心脏收缩期与心脏收缩期形成的一个完整心跳周期。
[0261]
在本公开的实施例中,还包括:在所述获取屏气状态下多时刻的多张第一dr肺图像对应的左肺图像及右肺图像之前,还包括:分别对所述屏气状态下多张第一dr肺图像对应的左肺图像及右肺图像进行肋骨抑制或肋骨消减。
[0262]
在本公开的实施例中,还包括:对所述随心脏跳动对应的肺血流图像中的血流以设定颜色进行显示。其中,所述对所述随心脏跳动对应的肺血流图像中的血流以设定颜色进行显示的方法,包括:获取设定颜色对应的配置;基于所述设定颜色对应的配置,对所述随心脏跳动对应的肺血流图像中的血流以设定颜色进行显示。
[0263]
其中,在本公开的实施例中,所述设定颜色对应的配置,包括:色相、饱和度、亮度的一种或几种;以及/或,其中,所述设定颜色或所述色相配置为红色系。
[0264]
在本公开的实施例及其他可能的实施例中,色相是指色彩的相貌,就是我们通常说的各种颜色,如红、橙、黄、绿、青、蓝、紫等,色相是区别各种不同色彩的最佳标准,它和色彩的强弱及明暗没有关系,只是纯粹表示色相相貌的差异。而,饱和度是指色彩的鲜艳程度,它是影响色彩最终效果的重要属性之一;饱和度也被称为色彩的纯度,即色彩中所含彩色成分和消色成分(也就是灰色)的比例,这个比例决定了色彩的饱和度及鲜艳程度。而,亮度(明度)是指色彩的明暗程度,明度不仅取决于光源的强度,而且还取决于物体表面的反射系数。
[0265]
包括或应用如上述的检测方法得到的随心脏跳动对应的肺血流图像;及,获取所述屏气状态下多时刻的多张第一dr肺图像对应患者在呼吸过程中多时刻的多张第二dr肺图像对应的左肺图像及右肺图像、呼吸过程中的多个配准变换矩阵、预设空气阈值区间;利用所述呼吸过程中的多个配准变换矩阵,分别对所述多张第二dr肺图像对应的左肺图像及右肺图像进行配准操作,得到所述多张第一dr肺图像对应的左肺配准图像及右肺配准图像;分别基于所述预设空气阈值区间及所述多张第二dr肺图像对应的左肺配准图像及右肺配准图像,确定所述呼吸过程中多时刻的多张第二dr肺图像对应的肺通气图像;分别基于所述多时刻的肺血流图像及所述肺通气图像,确定所述患者多时刻的通气灌注比值。
[0266]
在本公开的实施例及其他可能的实施例中,对所述呼吸过程中多时刻的多张第二dr肺图像进行左肺及右肺分割的方向,可详见上述左肺及右肺分割方法的具体说明。
[0267]
在本公开的实施例中,述分别基于所述多时刻的肺血流图像及所述肺通气图像,确定所述患者多时刻的通气灌注比值的方法,包括:分别确定所述多时刻的肺血流图像对应的多个肺血流面积及所述多时刻的所述肺通气图像对应的多个肺通气面积;分别计算所述多个肺血流面积与所述对应的多个肺通气面积的比值,得到所述患者多时刻的通气灌注比值。
[0268]
在本公开的实施例中,所述分别计算所述多个肺血流面积与所述对应的多个肺通气面积的比值,得到所述患者多时刻的通气灌注比值的方法,包括:分别确定所述多时刻对应的心脏收缩期时刻及心脏舒张期时刻;分别计算相同所述心脏收缩期时刻或心脏舒张期时刻的肺血流面积与肺通气面积的比值,得到所述患者多时刻的通气灌注比值。
[0269]
在本公开的实施例中,在所述获取呼吸过程中的多个配准变换矩阵之前,确定所述多个配准变换矩阵的方法,包括:分别对所述呼吸过程中多张第二dr肺图像的相邻dr肺图像进行配准,得到对应的呼吸过程中的多个配准变换矩阵;或,分别对所述呼吸过程中多
张第二dr肺图像对应的相邻左肺图像及右肺图像进行配准,得到呼吸过程中的左肺图像对应的多个配准变换矩阵及呼吸过程中的右肺图像对应的多个配准变换矩阵;进而,利用所述呼吸过程中的左肺图像对应的多个配准变换矩阵及所述呼吸过程中的右肺图像对应的多个配准变换矩阵,分别对所述多张第二dr肺图像对应的左肺图像及右肺图像进行配准操作,得到所述多张第二dr肺图像对应的左肺配准图像及右肺配准图像。
[0270]
在本公开的实施例及其他可能的实施例中,本公开使用的所述配准方法,可以采用现有的配准算法或模型,例如sift(scale-invariant feature transform)配准算法或模型、surf(speeded up robust features)配准算法或模型、orb(oriented fast and rotated brief)配准算法或模型等的一种或几种,或其他基于卷积神经网络的配准算法或模型。例如,基于卷积神经网络的配准算法或模型可配置为基于vgg网络的配准算法或模型。
[0271]
在本公开的实施例中,在获取呼吸过程中多张第二dr肺图像对应的左肺图像及右肺图像之前,分别对所述呼吸过程中多张dr肺图像对应的左肺图像及右肺图像进行肋骨抑制或肋骨消减。
[0272]
肺通气确定方法、空气潴留确定方法的执行主体可以是肺通气确定装置、空气潴留确定装置,例如,肺通气确定方法、空气潴留确定方法可以由终端设备或服务器或其它处理设备执行,其中,终端设备可以为用户设备(user equipment,ue)、移动设备、用户终端、终端、蜂窝电话、无绳电话、个人数字处理(personal digital assistant,pda)、手持设备、计算设备、车载设备、可穿戴设备等。在一些可能的实现方式中,该肺通气确定方法、空气潴留确定方法可以通过处理器调用存储器中存储的计算机可读指令的方式来实现。
[0273]
本领域技术人员可以理解,在具体实施方式的上述肺通气确定方法中,各步骤的撰写顺序并不意味着严格的执行顺序而对实施过程构成任何限定,各步骤的具体执行顺序应当以其功能和可能的内在逻辑确定。
[0274]
本公开实施例还提出了一种肺通气装置,所述肺通气确定装置,包括:获取单元,用于获取呼吸过程中多张dr肺图像对应的左肺图像及右肺图像、呼吸过程中的多个配准变换矩阵、预设空气阈值区间;配准单元,用于利用所述呼吸过程中的多个配准变换矩阵,分别对所述多张dr肺图像对应的左肺图像及右肺图像进行配准操作,得到所述多张dr肺图像对应的左肺配准图像及右肺配准图像;确定单元,用于分别基于所述预设空气阈值区间及所述多张dr肺图像对应的左肺配准图像及右肺配准图像,确定所述呼吸过程中多时刻的多张dr肺图像对应的肺通气区域。
[0275]
在本公开的实施例中,还包括:配准变换矩阵确定单元;所述配准变换矩阵确定单元,用于在所述获取呼吸过程中的多个配准变换矩阵之前,确定所述多个配准变换矩阵。
[0276]
在本公开的实施例中,所述配准变换矩阵确定单元,包括:第一配准单元及第二配准单元;所述第一配准单元,用于分别对所述呼吸过程中多张dr肺图像的相邻dr肺图像进行配准,得到对应的呼吸过程中的多个配准变换矩阵;或,所述第一配准单元,用于分别对所述呼吸过程中多张dr肺图像对应的相邻左肺图像及右肺图像进行配准,得到呼吸过程中的左肺图像对应的多个配准变换矩阵及呼吸过程中的右肺图像对应的多个配准变换矩阵;进而,所述第二配准单元,用于利用所述呼吸过程中的左肺图像对应的多个配准变换矩阵及所述呼吸过程中的右肺图像对应的多个配准变换矩阵,分别对所述多张dr肺图像对应的
左肺图像及右肺图像进行配准操作,得到所述多张dr肺图像对应的左肺配准图像及右肺配准图像。
[0277]
在本公开的实施例中,所述第二配准单元,包括:图像配置单元及配准图像生成单元;所述图像配置单元,用于将所述呼吸过程中第一时刻的dr肺图像配置为固定图像,并将与所述第一时刻相邻下一时刻对应的第二时刻的dr肺图像配置为浮动图像;所述配准图像生成单元,用于利用所述呼吸过程中的多个配准变换矩阵,分别对所述固定图像与所述浮动图像或所述固定图像对应的左肺图像及右肺图像与所述浮动图像对应的左肺图像及右肺图像进行配准操作,得到所述多张dr肺图像对应的左肺配准图像及右肺配准图像。
[0278]
在本公开的实施例中,还包括:预设空气阈值区间确定单元;所述预设空气阈值区间确定单元,用于在所述获取预设空气阈值区间之前,确定所述预设空气阈值区间。
[0279]
在本公开的实施例中,所述预设空气阈值区间确定单元,包括:最小预设空气阈值确定单元及最大预设空气阈值确定单元;所述最小预设空气阈值确定单元,用于分别确定所述呼吸过程中多张dr肺图像对应的左肺图像及右肺图像对应的最小预设空气阈值;所述最大预设空气阈值确定单元,用于基于所述最小预设空气阈值及设定阈值步长,确定所述呼吸过程中多张dr肺图像对应的左肺图像及右肺图像对应的最大预设空气阈值。
[0280]
在本公开的实施例中,所述最大预设空气阈值确定单元,包括:肺图像显示单元、空气标识单元及第一阈值确定单元;所述肺图像显示单元,用于分别显示所述呼吸过程中多张dr肺图像对应的左肺图像及右肺图像;所述空气标识单元,用于基于所述最小预设空气阈值及设定阈值步长,对所述显示的多张dr肺图像对应的左肺图像及右肺图像进行空气标识;所述第一阈值确定单元,用于根据所述多张dr肺图像对应的左肺图像及右肺图像的空气标识,确定所述呼吸过程中多张dr肺图像对应的左肺图像及右肺图像对应的最大预设空气阈值。
[0281]
在本公开的实施例中,所述阈值确定单元,包括:待显示空气阈值区间确定单元;所述待显示空气阈值区间确定单元,用于基于所述最小预设空气阈值及设定阈值步长,确定待显示空气阈值区间;
[0282]
所述空气标识单元,用于基于所述待显示空气阈值区间,对所述显示的多张dr肺图像对应的左肺图像及右肺图像进行空气标识。
[0283]
在本公开的实施例中,所述待显示空气阈值区间确定单元,包括:最大像素阈值确定单元、阈值滑条单元及第二阈值确定单元;所述最大像素阈值确定单元,用于确定所述呼吸过程中多张dr肺图像对应的左肺图像及右肺图像对应的最大像素阈值;所述阈值滑条单元,用于显示所述最小预设空气阈值及最大像素阈值对应的阈值滑条;所述第二阈值确定单元,用于基于所述设定阈值步长,调节所述阈值滑条上的阈值取值,以确定待显示空气阈值区间。
[0284]
在本公开的实施例中,所述空气标识单元,包括:配置获取单元及空气标识配置单元;所述配置获取单元,用于获取所述空气标识对应的第一配置颜色和/或第一配置透明度;所述空气标识配置单元,用于基于所述第一配置颜色和/或第一配置透明度,对所述显示的多张dr肺图像对应的左肺图像及右肺图像进行空气标识。
[0285]
在本公开的实施例中,所述确定单元,包括:空气标识区域单元及肺通气区域确定单元;所述空气标识区域单元,用于基于所述预设空气阈值区间,分别确定所述多张dr肺图
像对应的空气标识区域;所述肺通气区域确定单元,用于分别基于所述多张dr肺图像对应的空气标识区域,确定所述呼吸过程中多时刻的多张dr肺图像对应的肺通气区域。
[0286]
在本公开的实施例中,肺通气区域确定单元,包括:空气标识区域配置获取单元及肺通气区域显示单元;所述空气标识区域配置获取单元,用于获取所述空气标识区域对应的第一配置颜色和/或第一配置透明度;所述肺通气区域显示单元,用于分别基于所述第一配置颜色和/或第一配置透明度,对所述显示的多张dr肺图像对应的左肺图像及右肺图像中的空气标识区域进行显示。
[0287]
在本公开的实施例中,还包括:分割单元;所述分割单元,用于在所述获取呼吸过程中多时刻的dr左肺图像和/或dr右肺图像之前,获取所述呼吸过程中多时刻的dr肺图像,对所述呼吸过程中多时刻的dr肺图像进行左肺及右肺分割,得到多时刻的dr左肺图像及dr右肺图像。
[0288]
在本公开的实施例中,所述分割单元,包括:检测单元;所述检测单元,用于分别对所述呼吸过程中多时刻的dr肺图像的左侧胸部图像和右侧胸部图像进行肋缘边界、肺尖边界及纵隔和横隔边缘检测,得到多时刻的二维dr左肺图像及二维dr右肺图像;或,所述分割单元,包括:模型及数据获取单元、训练单元及输出单元;所述模型及数据获取单元,用于获取预设卷积神经网络的分割模型及用于训练所述分割模型的dr肺区标签图像;所述训练单元,用于利用所述训练所述分割模型的dr肺区标签图像,对所述分割模型进行训练;所述输出单元,用于基于所述训练后的分割模型,完成所述呼吸过程中多时刻的二维dr肺图像的左肺及右肺分割,得到多时刻的dr左肺图像及dr右肺图像。
[0289]
在本公开的实施例中,所述分割单元,还包括:标签确定单元;所述标签确定单元,用于分别对多张dr肺区图像的左侧胸部图像和右侧胸部图像进行肋缘边界、肺尖边界及纵隔和横隔边缘检测,得到所述多张dr肺区图像对应的dr肺区标签图像。
[0290]
在本公开的实施例中,还包括:肋骨抑制或肋骨消减单元;所述肋骨抑制或肋骨消减单元,用于在获取呼吸过程中多张dr肺图像对应的左肺图像及右肺图像之前,分别对所述呼吸过程中多张dr肺图像对应的左肺图像及右肺图像进行肋骨抑制或肋骨消减。
[0291]
另外,本公开实施例提出的所述空气潴留确定装置,包括:包括或应用如上述的肺通气确定方法或如上述的肺通气确定装置得到的所述呼吸过程中多时刻的多张dr肺图像对应的肺通气区域,或应用权利要求7所述的肺通气确定装置得到的所述呼吸过程中多时刻的多张dr肺图像对应的肺通气区域;及,空气潴留区域确定单元;所述空气潴留区域确定单元,用于基于所述呼吸过程中多张dr肺图像对应的左肺图像及右肺图像及所述呼吸过程中多时刻的多张dr肺图像对应的肺通气区域,确定所述呼吸过程中多张dr肺图像对应的左肺图像及右肺图像的空气潴留区域。
[0292]
在本公开的实施例中,所述空气潴留区域确定单元,包括:肺非通气区域确定单元及区域确定单元;所述肺非通气区域确定单元,用于基于所述呼吸过程中多张dr肺图像对应的左肺图像及右肺图像及所述呼吸过程中多时刻的多张dr肺图像对应的肺通气区域,确定所述呼吸过程中多时刻的多张dr肺图像对应的肺非通气区域;所述区域确定单元,用于基于所述预设空气阈值区间及所述肺非通气区域,确定所述呼吸过程中多张dr肺图像对应的左肺图像及右肺图像的空气潴留区域。
[0293]
在本公开的实施例中,所述区域确定单元,包括:减法单元;所述减法单元,用于所
述呼吸过程中多张dr肺图像对应的左肺图像及右肺图像与所述呼吸过程中多时刻的多张dr肺图像对应的肺通气区域相减,得到所述呼吸过程中多时刻的多张dr肺图像对应的肺非通气区域。
[0294]
在本公开的实施例中,还包括:空气潴留区域显示单元;所述空气潴留区域显示单元,用于对所述呼吸过程中多张dr肺图像对应的左肺图像及右肺图像的空气潴留区域进行显示。其中,所述空气潴留区域显示单元,包括:空气潴留区域配置获取单元及配置显示单元;所述空气潴留区域配置获取单元,用于获取所述空气潴留区域对应的第二配置颜色和/或第二配置透明度;所述配置显示单元,用于基于所述第二配置颜色和/或第二配置透明度,对所述显示的多张dr肺图像对应的左肺图像及右肺图像进行的空气潴留区域进行显示。
[0295]
在一些实施例中,本公开实施例提供的装置具有的功能或包含的模块可以用于执行上文方法实施例描述的方法,其具体实现可以参照上文确定方法和/或空气潴留确定方法实施例的描述,为了简洁,这里不再赘述。
[0296]
本公开实施例还提出一种计算机可读存储介质,其上存储有计算机程序指令,所述计算机程序指令被处理器执行时实现上述确定方法和/或空气潴留确定方法。计算机可读存储介质可以是非易失性计算机可读存储介质。
[0297]
本公开实施例还提出一种电子设备,包括:处理器;用于存储处理器可执行指令的存储器;其中,所述处理器被配置为上述确定方法和/或空气潴留确定方法。其中,电子设备可以被提供为终端、服务器或其它形态的设备。
[0298]
图2是根据一示例性实施例示出的一种电子设备800的框图。例如,电子设备800可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等终端。
[0299]
参照图2,电子设备800可以包括以下一个或多个组件:处理组件802,存储器804,电源组件806,多媒体组件808,音频组件810,输入/输出(i/o)的接口812,传感器组件814,以及通信组件816。
[0300]
处理组件802通常控制电子设备800的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件802可以包括一个或多个处理器820来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件802可以包括一个或多个模块,便于处理组件802和其他组件之间的交互。例如,处理组件802可以包括多媒体模块,以方便多媒体组件808和处理组件802之间的交互。
[0301]
存储器804被配置为存储各种类型的数据以支持在电子设备800的操作。这些数据的示例包括用于在电子设备800上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器804可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(sram),电可擦除可编程只读存储器(eeprom),可擦除可编程只读存储器(eprom),可编程只读存储器(prom),只读存储器(rom),磁存储器,快闪存储器,磁盘或光盘。
[0302]
电源组件806为电子设备800的各种组件提供电力。电源组件806可以包括电源管理系统,一个或多个电源,及其他与为电子设备800生成、管理和分配电力相关联的组件。
[0303]
多媒体组件808包括在所述电子设备800和用户之间的提供一个输出接口的屏幕。
在一些实施例中,屏幕可以包括液晶显示器(lcd)和触摸面板(tp)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件808包括一个前置摄像头和/或后置摄像头。当电子设备800处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
[0304]
音频组件810被配置为输出和/或输入音频信号。例如,音频组件810包括一个麦克风(mic),当电子设备800处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器804或经由通信组件816发送。在一些实施例中,音频组件810还包括一个扬声器,用于输出音频信号。
[0305]
i/o接口812为处理组件802和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
[0306]
传感器组件814包括一个或多个传感器,用于为电子设备800提供各个方面的状态评估。例如,传感器组件814可以检测到电子设备800的打开/关闭状态,组件的相对定位,例如所述组件为电子设备800的显示器和小键盘,传感器组件814还可以检测电子设备800或电子设备800一个组件的位置改变,用户与电子设备800接触的存在或不存在,电子设备800方位或加速/减速和电子设备800的温度变化。传感器组件814可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件814还可以包括光传感器,如cmos或ccd图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件814还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
[0307]
通信组件816被配置为便于电子设备800和其他设备之间有线或无线方式的通信。电子设备800可以接入基于通信标准的无线网络,如wifi,2g或3g,或它们的组合。在一个示例性实施例中,通信组件816经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件816还包括近场通信(nfc)模块,以促进短程通信。例如,在nfc模块可基于射频识别(rfid)技术,红外数据协会(irda)技术,超宽带(uwb)技术,蓝牙(bt)技术和其他技术来实现。
[0308]
在示例性实施例中,电子设备800可以被一个或多个应用专用集成电路(asic)、数字信号处理器(dsp)、数字信号处理设备(dspd)、可编程逻辑器件(pld)、现场可编程门阵列(fpga)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
[0309]
在示例性实施例中,还提供了一种非易失性计算机可读存储介质,例如包括计算机程序指令的存储器804,上述计算机程序指令可由电子设备800的处理器820执行以完成上述方法。
[0310]
图3是根据一示例性实施例示出的一种电子设备1900的框图。例如,电子设备1900可以被提供为一服务器。参照图3,电子设备1900包括处理组件1922,其进一步包括一个或多个处理器,以及由存储器1932所代表的存储器资源,用于存储可由处理组件1922的执行的指令,例如应用程序。存储器1932中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件1922被配置为执行指令,以执行上述方法。
[0311]
电子设备1900还可以包括一个电源组件1926被配置为执行电子设备1900的电源管理,一个有线或无线网络接口1950被配置为将电子设备1900连接到网络,和一个输入输出(i/o)接口1958。电子设备1900可以操作基于存储在存储器1932的操作系统,例如windows servertm,mac os xtm,unixtm,linuxtm,freebsdtm或类似。
[0312]
在示例性实施例中,还提供了一种非易失性计算机可读存储介质,例如包括计算机程序指令的存储器1932,上述计算机程序指令可由电子设备1900的处理组件1922执行以完成上述方法。
[0313]
本公开可以是系统、方法和/或计算机程序产品。计算机程序产品可以包括计算机可读存储介质,其上载有用于使处理器实现本公开的各个方面的计算机可读程序指令。
[0314]
计算机可读存储介质可以是可以保持和存储由指令执行设备使用的指令的有形设备。计算机可读存储介质例如可以是――但不限于――电存储设备、磁存储设备、光存储设备、电磁存储设备、半导体存储设备或者上述的任意合适的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括:便携式计算机盘、硬盘、随机存取存储器(ram)、只读存储器(rom)、可擦式可编程只读存储器(eprom或闪存)、静态随机存取存储器(sram)、便携式压缩盘只读存储器(cd-rom)、数字多功能盘(dvd)、记忆棒、软盘、机械编码设备、例如其上存储有指令的打孔卡或凹槽内凸起结构、以及上述的任意合适的组合。这里所使用的计算机可读存储介质不被解释为瞬时信号本身,诸如无线电波或者其他自由传播的电磁波、通过波导或其他传输媒介传播的电磁波(例如,通过光纤电缆的光脉冲)、或者通过电线传输的电信号。
[0315]
这里所描述的计算机可读程序指令可以从计算机可读存储介质下载到各个计算/处理设备,或者通过网络、例如因特网、局域网、广域网和/或无线网下载到外部计算机或外部存储设备。网络可以包括铜传输电缆、光纤传输、无线传输、路由器、防火墙、交换机、网关计算机和/或边缘服务器。每个计算/处理设备中的网络适配卡或者网络接口从网络接收计算机可读程序指令,并转发该计算机可读程序指令,以供存储在各个计算/处理设备中的计算机可读存储介质中。
[0316]
用于执行本公开操作的计算机程序指令可以是汇编指令、指令集架构(isa)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码,所述编程语言包括面向对象的编程语言—诸如smalltalk、c++等,以及常规的过程式编程语言—诸如“c”语言或类似的编程语言。计算机可读程序指令可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络—包括局域网(lan)或广域网(wan)—连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。在一些实施例中,通过利用计算机可读程序指令的状态信息来个性化定制电子电路,例如可编程逻辑电路、现场可编程门阵列(fpga)或可编程逻辑阵列(pla),该电子电路可以执行计算机可读程序指令,从而实现本公开的各个方面。
[0317]
这里参照根据本公开实施例的方法、装置(系统)和计算机程序产品的流程图和/或框图描述了本公开的各个方面。应当理解,流程图和/或框图的每个方框以及流程图和/
或框图中各方框的组合,都可以由计算机可读程序指令实现。
[0318]
这些计算机可读程序指令可以提供给通用计算机、专用计算机或其它可编程数据处理装置的处理器,从而生产出一种机器,使得这些指令在通过计算机或其它可编程数据处理装置的处理器执行时,产生了实现流程图和/或框图中的一个或多个方框中规定的功能/动作的装置。也可以把这些计算机可读程序指令存储在计算机可读存储介质中,这些指令使得计算机、可编程数据处理装置和/或其他设备以特定方式工作,从而,存储有指令的计算机可读介质则包括一个制造品,其包括实现流程图和/或框图中的一个或多个方框中规定的功能/动作的各个方面的指令。
[0319]
也可以把计算机可读程序指令加载到计算机、其它可编程数据处理装置、或其它设备上,使得在计算机、其它可编程数据处理装置或其它设备上执行一系列操作步骤,以产生计算机实现的过程,从而使得在计算机、其它可编程数据处理装置、或其它设备上执行的指令实现流程图和/或框图中的一个或多个方框中规定的功能/动作。
[0320]
附图中的流程图和框图显示了根据本公开的多个实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或指令的一部分,所述模块、程序段或指令的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。
[0321]
以上已经描述了本公开的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。本文中所用术语的选择,旨在最好地解释各实施例的原理、实际应用或对市场中的技术的技术改进,或者使本技术领域的其它普通技术人员能理解本文披露的各实施例。
技术特征:
1.一种肺通气确定方法,其特征在于,包括:获取呼吸过程中多张dr肺图像对应的左肺图像及右肺图像、呼吸过程中的多个配准变换矩阵、预设空气阈值区间;利用所述呼吸过程中的多个配准变换矩阵,分别对所述多张dr肺图像对应的左肺图像及右肺图像进行配准操作,得到所述多张dr肺图像对应的左肺配准图像及右肺配准图像;分别基于所述预设空气阈值区间及所述多张dr肺图像对应的左肺配准图像及右肺配准图像,确定所述呼吸过程中多时刻的多张dr肺图像对应的肺通气区域。2.根据权利要求1所述的肺通气确定方法,其特征在于,在所述获取呼吸过程中的多个配准变换矩阵之前,确定所述多个配准变换矩阵的方法,包括:分别对所述呼吸过程中多张dr肺图像的相邻dr肺图像进行配准,得到对应的呼吸过程中的多个配准变换矩阵;或,分别对所述呼吸过程中多张dr肺图像对应的相邻左肺图像及右肺图像进行配准,得到呼吸过程中的左肺图像对应的多个配准变换矩阵及呼吸过程中的右肺图像对应的多个配准变换矩阵;进而,利用所述呼吸过程中的左肺图像对应的多个配准变换矩阵及所述呼吸过程中的右肺图像对应的多个配准变换矩阵,分别对所述多张dr肺图像对应的左肺图像及右肺图像进行配准操作,得到所述多张dr肺图像对应的左肺配准图像及右肺配准图像。3.根据权利要求1-2任一项所述的肺通气确定方法,其特征在于,所述利用所述呼吸过程中的多个配准变换矩阵,分别对所述多张dr肺图像对应的左肺图像及右肺图像进行配准操作,得到所述多张dr肺图像对应的左肺配准图像及右肺配准图像的方法,包括:将所述呼吸过程中第一时刻的dr肺图像配置为固定图像,并将与所述第一时刻相邻下一时刻对应的第二时刻的dr肺图像配置为浮动图像;利用所述呼吸过程中的多个配准变换矩阵,分别对所述固定图像与所述浮动图像或所述固定图像对应的左肺图像及右肺图像与所述浮动图像对应的左肺图像及右肺图像进行配准操作,得到所述多张dr肺图像对应的左肺配准图像及右肺配准图像。4.根据权利要求1-3任一项所述的肺通气确定方法,其特征在于,在所述获取预设空气阈值区间之前,确定所述预设空气阈值区间的方法,包括:分别确定所述呼吸过程中多张dr肺图像对应的左肺图像及右肺图像对应的最小预设空气阈值;基于所述最小预设空气阈值及设定阈值步长,确定所述呼吸过程中多张dr肺图像对应的左肺图像及右肺图像对应的最大预设空气阈值;以及/或,所述基于所述最小预设空气阈值及设定阈值步长,确定所述呼吸过程中多张dr肺图像对应的左肺图像及右肺图像对应的最大预设空气阈值的方法,包括:分别显示所述呼吸过程中多张dr肺图像对应的左肺图像及右肺图像;基于所述最小预设空气阈值及设定阈值步长,对所述显示的多张dr肺图像对应的左肺图像及右肺图像进行空气标识;根据所述多张dr肺图像对应的左肺图像及右肺图像的空气标识,确定所述呼吸过程中多张dr肺图像对应的左肺图像及右肺图像对应的最大预设空气阈值;以及/或,所述基于所述最小预设空气阈值及设定阈值步长,在所述显示的多张dr肺图像对应的
左肺图像及右肺图像进行空气标识的方法,包括:基于所述最小预设空气阈值及设定阈值步长,确定待显示空气阈值区间;基于所述待显示空气阈值区间,对所述显示的多张dr肺图像对应的左肺图像及右肺图像进行空气标识;以及/或,所述基于所述最小预设空气阈值及设定阈值步长,确定待显示空气阈值区间的方法,包括:确定所述呼吸过程中多张dr肺图像对应的左肺图像及右肺图像对应的最大像素阈值;显示所述最小预设空气阈值及最大像素阈值对应的阈值滑条;基于所述设定阈值步长,调节所述阈值滑条上的阈值取值,以确定待显示空气阈值区间;以及/或,所述显示的多张dr肺图像对应的左肺图像及右肺图像进行空气标识的方法,包括:获取所述空气标识对应的第一配置颜色和/或第一配置透明度;基于所述第一配置颜色和/或第一配置透明度,对所述显示的多张dr肺图像对应的左肺图像及右肺图像进行空气标识;以及/或,所述分别基于所述预设空气阈值区间及所述多张dr肺图像对应的左肺配准图像及右肺配准图像,确定所述呼吸过程中多时刻的多张dr肺图像对应的肺通气区域的方法,包括:基于所述预设空气阈值区间,分别确定所述多张dr肺图像对应的空气标识区域;分别基于所述多张dr肺图像对应的空气标识区域,确定所述呼吸过程中多时刻的多张dr肺图像对应的肺通气区域;以及/或,对所述确定所述呼吸过程中多时刻的多张dr肺图像对应的肺通气区域进行显示的方法,包括:获取所述空气标识区域对应的第一配置颜色和/或第一配置透明度;分别基于所述第一配置颜色和/或第一配置透明度,对所述显示的多张dr肺图像对应的左肺图像及右肺图像中的空气标识区域进行显示。5.根据权利要求1-4任一项所述的肺通气确定方法,其特征在于,在所述获取呼吸过程中多张dr肺图像对应的左肺图像及右肺图像之前,对所述呼吸过程中多张dr肺图像进行左肺及右肺分割,得到所述呼吸过程中多张dr肺图像对应的左肺图像及右肺图像;以及/或,所述对所述呼吸过程中多张dr肺图像进行左肺及右肺分割,得到所述呼吸过程中多张dr肺图像对应的左肺图像及右肺图像的方法,包括:所述对所述呼吸过程中多时刻的dr肺图像进行左肺及右肺分割,得到多时刻的dr左肺图像及dr右肺图像的方法,包括:分别对所述呼吸过程中多时刻的dr肺图像的左侧胸部图像和右侧胸部图像进行肋缘边界、肺尖边界及纵隔和横隔边缘检测,得到多时刻的dr左肺图像及dr右肺图像;或,获取预设卷积神经网络的分割模型及用于训练所述分割模型的dr肺区标签图像;利用所述训练所述分割模型的dr肺区标签图像,对所述分割模型进行训练;基于所述训练后的分割模型,完成所述呼吸过程中多时刻的多张dr肺图像的左肺及右肺分割,得到多时刻的dr左肺图像及dr右肺图像;以及/或,所述用于训练所述分割模型的dr肺区标签图像的确定方法,包括:分别对多张dr肺区图像的左侧胸部图像和右侧胸部图像进行肋缘边界、肺尖边界及纵隔和横隔边缘检测,得到所述多张dr肺区图像对应的dr肺区标签图像;以及/或,
在获取呼吸过程中多张dr肺图像对应的左肺图像及右肺图像之前,分别对所述呼吸过程中多张dr肺图像对应的左肺图像及右肺图像进行肋骨抑制或肋骨消减。6.一种空气潴留确定方法,其特征在于,包括或应用如权利要求1-5任一项所述的肺通气确定方法得到的所述呼吸过程中多时刻的多张dr肺图像对应的肺通气区域;基于所述呼吸过程中多张dr肺图像对应的左肺图像及右肺图像及所述呼吸过程中多时刻的多张dr肺图像对应的肺通气区域,确定所述呼吸过程中多张dr肺图像对应的左肺图像及右肺图像的空气潴留区域;以及/或,所述基于所述呼吸过程中多张dr肺图像对应的左肺图像及右肺图像及所述呼吸过程中多时刻的多张dr肺图像对应的肺通气区域,确定所述呼吸过程中多张dr肺图像对应的左肺图像及右肺图像的空气潴留区域的方法,包括:基于所述呼吸过程中多张dr肺图像对应的左肺图像及右肺图像及所述呼吸过程中多时刻的多张dr肺图像对应的肺通气区域,确定所述呼吸过程中多时刻的多张dr肺图像对应的肺非通气区域;基于所述预设空气阈值区间及所述肺非通气区域,确定所述呼吸过程中多张dr肺图像对应的左肺图像及右肺图像的空气潴留区域;以及/或,所述基于所述呼吸过程中多张dr肺图像对应的左肺图像及右肺图像及所述呼吸过程中多时刻的多张dr肺图像对应的肺通气区域,确定所述呼吸过程中多时刻的多张dr肺图像对应的肺非通气区域的方法,包括:所述呼吸过程中多张dr肺图像对应的左肺图像及右肺图像与所述呼吸过程中多时刻的多张dr肺图像对应的肺通气区域相减,得到所述呼吸过程中多时刻的多张dr肺图像对应的肺非通气区域;以及/或,还包括:对所述呼吸过程中多张dr肺图像对应的左肺图像及右肺图像的空气潴留区域进行显示,包括:获取所述空气潴留区域对应的第二配置颜色和/或第二配置透明度;基于所述第二配置颜色和/或第二配置透明度,对所述显示的多张dr肺图像对应的左肺图像及右肺图像进行的空气潴留区域进行显示。7.一种肺通气确定装置,其特征在于,包括:获取单元,用于获取呼吸过程中多张dr肺图像对应的左肺图像及右肺图像、呼吸过程中的多个配准变换矩阵、预设空气阈值区间;配准单元,用于利用所述呼吸过程中的多个配准变换矩阵,分别对所述多张dr肺图像对应的左肺图像及右肺图像进行配准操作,得到所述多张dr肺图像对应的左肺配准图像及右肺配准图像;确定单元,用于分别基于所述预设空气阈值区间及所述多张dr肺图像对应的左肺配准图像及右肺配准图像,确定所述呼吸过程中多时刻的多张dr肺图像对应的肺通气区域;以及/或,还包括:配准变换矩阵确定单元;所述配准变换矩阵确定单元,用于在所述获取呼吸过程中的多个配准变换矩阵之前,确定所述多个配准变换矩阵;以及/或,所述配准变换矩阵确定单元,包括:第一配准单元及第二配准单元;
所述第一配准单元,用于分别对所述呼吸过程中多张dr肺图像的相邻dr肺图像进行配准,得到对应的呼吸过程中的多个配准变换矩阵;或,所述第一配准单元,用于分别对所述呼吸过程中多张dr肺图像对应的相邻左肺图像及右肺图像进行配准,得到呼吸过程中的左肺图像对应的多个配准变换矩阵及呼吸过程中的右肺图像对应的多个配准变换矩阵;进而,所述第二配准单元,用于利用所述呼吸过程中的左肺图像对应的多个配准变换矩阵及所述呼吸过程中的右肺图像对应的多个配准变换矩阵,分别对所述多张dr肺图像对应的左肺图像及右肺图像进行配准操作,得到所述多张dr肺图像对应的左肺配准图像及右肺配准图像;以及/或,所述第二配准单元,包括:图像配置单元及配准图像生成单元;所述图像配置单元,用于将所述呼吸过程中第一时刻的dr肺图像配置为固定图像,并将与所述第一时刻相邻下一时刻对应的第二时刻的dr肺图像配置为浮动图像;所述配准图像生成单元,用于利用所述呼吸过程中的多个配准变换矩阵,分别对所述固定图像与所述浮动图像或所述固定图像对应的左肺图像及右肺图像与所述浮动图像对应的左肺图像及右肺图像进行配准操作,得到所述多张dr肺图像对应的左肺配准图像及右肺配准图像;以及/或,还包括:预设空气阈值区间确定单元;所述预设空气阈值区间确定单元,用于在所述获取预设空气阈值区间之前,确定所述预设空气阈值区间;以及/或,所述预设空气阈值区间确定单元,包括:最小预设空气阈值确定单元及最大预设空气阈值确定单元;所述最小预设空气阈值确定单元,用于分别确定所述呼吸过程中多张dr肺图像对应的左肺图像及右肺图像对应的最小预设空气阈值;所述最大预设空气阈值确定单元,用于基于所述最小预设空气阈值及设定阈值步长,确定所述呼吸过程中多张dr肺图像对应的左肺图像及右肺图像对应的最大预设空气阈值;以及/或,所述最大预设空气阈值确定单元,包括:肺图像显示单元、空气标识单元及第一阈值确定单元;所述肺图像显示单元,用于分别显示所述呼吸过程中多张dr肺图像对应的左肺图像及右肺图像;所述空气标识单元,用于基于所述最小预设空气阈值及设定阈值步长,对所述显示的多张dr肺图像对应的左肺图像及右肺图像进行空气标识;所述第一阈值确定单元,用于根据所述多张dr肺图像对应的左肺图像及右肺图像的空气标识,确定所述呼吸过程中多张dr肺图像对应的左肺图像及右肺图像对应的最大预设空气阈值;以及/或,所述阈值确定单元,包括:待显示空气阈值区间确定单元;所述待显示空气阈值区间确定单元,用于基于所述最小预设空气阈值及设定阈值步长,确定待显示空气阈值区间;所述空气标识单元,用于基于所述待显示空气阈值区间,对所述显示的多张dr肺图像
对应的左肺图像及右肺图像进行空气标识;以及/或,所述待显示空气阈值区间确定单元,包括:最大像素阈值确定单元、阈值滑条单元及第二阈值确定单元;所述最大像素阈值确定单元,用于确定所述呼吸过程中多张dr肺图像对应的左肺图像及右肺图像对应的最大像素阈值;所述阈值滑条单元,用于显示所述最小预设空气阈值及最大像素阈值对应的阈值滑条;所述第二阈值确定单元,用于基于所述设定阈值步长,调节所述阈值滑条上的阈值取值,以确定待显示空气阈值区间;以及/或,所述空气标识单元,包括:配置获取单元及空气标识配置单元;所述配置获取单元,用于获取所述空气标识对应的第一配置颜色和/或第一配置透明度;所述空气标识配置单元,用于基于所述第一配置颜色和/或第一配置透明度,对所述显示的多张dr肺图像对应的左肺图像及右肺图像进行空气标识;以及/或,所述确定单元,包括:空气标识区域单元及肺通气区域确定单元;所述空气标识区域单元,用于基于所述预设空气阈值区间,分别确定所述多张dr肺图像对应的空气标识区域;所述肺通气区域确定单元,用于分别基于所述多张dr肺图像对应的空气标识区域,确定所述呼吸过程中多时刻的多张dr肺图像对应的肺通气区域;以及/或,肺通气区域确定单元,包括:空气标识区域配置获取单元及肺通气区域显示单元;所述空气标识区域配置获取单元,用于获取所述空气标识区域对应的第一配置颜色和/或第一配置透明度;所述肺通气区域显示单元,用于分别基于所述第一配置颜色和/或第一配置透明度,对所述显示的多张dr肺图像对应的左肺图像及右肺图像中的空气标识区域进行显示;以及/或,还包括:分割单元;所述分割单元,用于在所述获取呼吸过程中多时刻的dr左肺图像和/或dr右肺图像之前,获取所述呼吸过程中多时刻的dr肺图像,对所述呼吸过程中多时刻的dr肺图像进行左肺及右肺分割,得到多时刻的dr左肺图像及dr右肺图像;以及/或,所述分割单元,包括:检测单元;所述检测单元,用于分别对所述呼吸过程中多时刻的dr肺图像的左侧胸部图像和右侧胸部图像进行肋缘边界、肺尖边界及纵隔和横隔边缘检测,得到多时刻的二维dr左肺图像及二维dr右肺图像;或,所述分割单元,包括:模型及数据获取单元、训练单元及输出单元;所述模型及数据获取单元,用于获取预设卷积神经网络的分割模型及用于训练所述分割模型的dr肺区标签图像;所述训练单元,用于利用所述训练所述分割模型的dr肺区标签图像,对所述分割模型进行训练;所述输出单元,用于基于所述训练后的分割模型,完成所述呼吸过程中多时刻的二维
dr肺图像的左肺及右肺分割,得到多时刻的dr左肺图像及dr右肺图像;以及/或,所述分割单元,还包括:标签确定单元;所述标签确定单元,用于分别对多张dr肺区图像的左侧胸部图像和右侧胸部图像进行肋缘边界、肺尖边界及纵隔和横隔边缘检测,得到所述多张dr肺区图像对应的dr肺区标签图像;还包括: 肋骨抑制或肋骨消减单元;所述肋骨抑制或肋骨消减单元,用于在获取呼吸过程中多张dr肺图像对应的左肺图像及右肺图像之前,分别对所述呼吸过程中多张dr肺图像对应的左肺图像及右肺图像进行肋骨抑制或肋骨消减。8.一种空气潴留确定装置,其特征在于,包括或应用如权利要求1-5任一项所述的肺通气确定方法得到的所述呼吸过程中多时刻的多张dr肺图像对应的肺通气区域,或应用权利要求7所述的肺通气确定装置得到的所述呼吸过程中多时刻的多张dr肺图像对应的肺通气区域;及,空气潴留区域确定单元;所述空气潴留区域确定单元,用于基于所述呼吸过程中多张dr肺图像对应的左肺图像及右肺图像及所述呼吸过程中多时刻的多张dr肺图像对应的肺通气区域,确定所述呼吸过程中多张dr肺图像对应的左肺图像及右肺图像的空气潴留区域;以及/或,所述空气潴留区域确定单元,包括:肺非通气区域确定单元及区域确定单元;所述肺非通气区域确定单元,用于基于所述呼吸过程中多张dr肺图像对应的左肺图像及右肺图像及所述呼吸过程中多时刻的多张dr肺图像对应的肺通气区域,确定所述呼吸过程中多时刻的多张dr肺图像对应的肺非通气区域;所述区域确定单元,用于基于所述预设空气阈值区间及所述肺非通气区域,确定所述呼吸过程中多张dr肺图像对应的左肺图像及右肺图像的空气潴留区域;以及/或,所述区域确定单元,包括:减法单元;所述减法单元,用于所述呼吸过程中多张dr肺图像对应的左肺图像及右肺图像与所述呼吸过程中多时刻的多张dr肺图像对应的肺通气区域相减,得到所述呼吸过程中多时刻的多张dr肺图像对应的肺非通气区域;以及/或,还包括:空气潴留区域显示单元;所述空气潴留区域显示单元,用于对所述呼吸过程中多张dr肺图像对应的左肺图像及右肺图像的空气潴留区域进行显示;以及/或,所述空气潴留区域显示单元,包括:空气潴留区域配置获取单元及配置显示单元;所述空气潴留区域配置获取单元,用于获取所述空气潴留区域对应的第二配置颜色和/或第二配置透明度;所述配置显示单元,用于基于所述第二配置颜色和/或第二配置透明度,对所述显示的多张dr肺图像对应的左肺图像及右肺图像进行的空气潴留区域进行显示。9.一种电子设备,其特征在于,包括:处理器;用于存储处理器可执行指令的存储器;其中,所述处理器被配置为调用所述存储器存储的指令,以执行权利要求1至6中任意一项所述的肺通气确定方法和/或权利要求7所述的空气潴留确定方法。
10.一种计算机可读存储介质,其上存储有计算机程序指令,其特征在于,所述计算机程序指令被处理器执行时实现权利要求1至6中任意一项所述的肺通气确定方法和/或权利要求7所述的空气潴留确定方法。
技术总结
本公开涉及一种肺通气、空气潴留确定方法及装置、电子设备和存储介质,涉及DR图像处理技术领域。所述的肺通气确定方法,包括:获取呼吸过程中多张DR肺图像对应的左肺图像及右肺图像、呼吸过程中的多个配准变换矩阵、预设空气阈值区间;利用所述呼吸过程中的多个配准变换矩阵,分别对所述多张DR肺图像对应的左肺图像及右肺图像进行配准操作,得到所述多张DR肺图像对应的左肺配准图像及右肺配准图像;分别基于所述预设空气阈值区间及所述多张DR肺图像对应的左肺配准图像及右肺配准图像,确定所述呼吸过程中多时刻的多张DR肺图像对应的肺通气区域。本公开实施例可确定肺通气。本公开实施例可确定肺通气。本公开实施例可确定肺通气。
技术研发人员:郑杰 杨英健 华贤国 吴天琦 欧阳张磊 王细珍 佘俊国 郭朋 李勇 陈晶
受保护的技术使用者:深圳蓝影医学科技股份有限公司
技术研发日:2023.07.03
技术公布日:2023/10/8
版权声明
本文仅代表作者观点,不代表航家之家立场。
本文系作者授权航家号发表,未经原创作者书面授权,任何单位或个人不得引用、复制、转载、摘编、链接或以其他任何方式复制发表。任何单位或个人在获得书面授权使用航空之家内容时,须注明作者及来源 “航空之家”。如非法使用航空之家的部分或全部内容的,航空之家将依法追究其法律责任。(航空之家官方QQ:2926969996)
航空之家 https://www.aerohome.com.cn/
航空商城 https://mall.aerohome.com.cn/
航空资讯 https://news.aerohome.com.cn/