一种基于神经网络的物联网故障检测控制方法及系统与流程
未命名
10-08
阅读:108
评论:0

1.本发明涉及一般的控制系统领域,特别涉及一种基于神经网络的物联网故障检测控制方法及系统。
背景技术:
2.近年来,人工神经网络发展到了深度学习(deep learning)阶段,即深度神经网络,深度学习试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的一系列算法,其强大表达能力使得其在各个机器学习的任务上取到了最好的效果,在视频分类上的表现在目前也超过了其它方法,深度学习使用了分层抽象的思想,高层的概念通过低层的概念学习得到,这一分层结构通常使用贪婪逐层训练算法构建而成,并从中选取有助于机器学习的有效特征,很多深度学习算法都是以无监督学习的形式出现的,因此这些算法能被应用于其他算法无法企及的无标签数据,这一类数据比有标签的数据更为丰富,也更容易获得,这一点成为深度学习的重要优势。典型的无监督学习任务包括:维度消减(dimensionality reduction),将输入数据投影到一个低维度空间中,实现更有意义的距离表示或可视化效果,比如pca(principle component analysis);聚类(clustering),发现样本之间的相似性并将它们归到相应类别,比如k-means;密度估计(density estimation),学习一个生成训练数据x的分布(distribution),比如gmm(gaussian mixture models);深度学习的另外一个好处是将用非监督式或半监督式的特征学习和分层特征提取的高效算法来替代手工获取特征,它将传统学习方法的特征提取与分类合二为一,从而使得通过学习得到的特征对于分类具有最好的效果,参照故障图像数据库中的故障图谱,能给出安全分析结论并实现智能预警,现有的针对工业物联网的故障定位,现阶段主要依靠网络分析仪中的报文记录、流量监控等功能判别异常原因,但由于工业物联网中的设备端口数量极多,光纤连接情况复杂,所产生的报文信息种类繁多且数量巨大,因此在分析过程中许多关键信息难以被有效挖掘,此外由于二次设备间的通信依靠scd文件中的报文订阅关系,而scd文件中只有报文的发送端与接收端,并没有描述包括交换机在内的实际物理链路,因此当工业物联网发生故障时,报文订阅方只能发出断链告警,而无法直接判别故障发生位置,故而无法快速且精确地定位工业物联网故障点,本发明是为了解决这一问题,提出一种基于神经网络的物联网故障检测控制方法及系统。
技术实现要素:
3.本发明的主要目的在于提供一种基于神经网络的物联网故障检测控制方法及系统,能够有效解决背景技术中的问题:现有的针对物联网的故障定位,现阶段主要依靠网络分析仪中的报文记录、流量监控等功能判别异常原因,但由于物联网中的设备端口数量极多,光纤连接情况复杂,所产生的报文信息种类繁多且数量巨大,因此在分析过程中许多关键信息难以被有效挖掘,此外由于二次设备间的通信依靠scd文件中的报文订阅关系,而scd文件中只有报文的发送端与接收端,并没有描述包括交换机在内的实际物理链路,因此
当物联网发生故障时,报文订阅方只能发出断链告警,而无法直接判别故障发生位置,故而无法快速且精确地定位物联网故障点。
4.为实现上述目的,本发明采取的技术方案为:
5.一种基于神经网络的物联网故障检测控制系统,包括数据库、深入学习训练模块、控制反馈端口、故障定位端口和告警信号监测端口,所述数据库用于储存历史故障样本数据信息,其中n为项数,为单个故障样本的故障采集信息,所述深入学习训练模块用于对故障定位模型进行深入学习训练,以对故障位置进行定位查找,所述告警信号监测端口用于采集设备组件运行过程中的故障特征数据集,所述故障定位端口用于在深入学习训练模块的辅助下,对故障位置进行查找、输出,所述控制反馈端口用于对故障位置进行反馈,并根据数据库中的解决方案对故障设备进行控制反馈。
6.本发明进一步的改进在于,所述故障定位端口包括故障特征集提取模块、信号触发模块、故障位置排列模块、定位模型提取模块、故障位置输出模块和信号传输模块,所述故障特征集提取模块用于提取告警信号监测端口采集的故障特征数据集,所述故障位置排列模块用于根据深入学习训练结果进行故障点的可能点输出并进行降序排列,所述定位模型提取模块用于对深入学习训练模块中的定位模型进行提取,所述故障位置输出模块用于输出查找的可能性最大的故障位置,所述信号传输模块用于系统各个模块之间的信号传输。
7.本发明进一步的改进在于,所述告警信号监测端口包括若干个异常信号采集单元,所述异常信号采集单元安装在监测设备的节点上,对监测设备的异常信号进行传输感知,所述控制反馈端口包括警报单元、故障位置输出单元和故障设备控制单元,所述警报单元用于对故障设备位置进行快速报警,所述故障位置输出单元用于向维修人员输出故障的具体位置,所述故障设备控制单元用于对故障设备进行控制反馈。
8.本发明进一步的改进在于,所述深入学习训练模块包括神经网络训练单元、故障代码输出单元和模型查找单元,所述神经网络训练单元包括输入层、若干个隐藏层和输出层,用于将输入的故障特征数据集转化为故障位置代码数据,其中表示训练单元第n1层的第m项,即输出层的第m项,其中下标代表层数,上标代表项数,所述故障代码输出单元用于对故障代码进行输出,所述模型查找单元用于在数据库中查找本故障特征数据集适配的数据模型。
9.本发明进一步的改进在于,所述信号触发模块用于判断告警信号总数是否达到触发阈值,触发阈值的设定值为数据库中历史事件告警信号数的最小值,从而对达到触发阈值的告警信号进行触发故障点定位和处理操作。
10.本发明进一步的改进在于,所述数据库中还储存设备点故障的解决方案,在故障点查找完成后,其故障特征数据集和故障点数据合并储存在数据库中。
11.一种基于神经网络的物联网故障检测控制方法,其基于上述所述一种基于神经网络的物联网故障检测控制系统实现,所述方法的具体步骤如下:
12.s1:异常信号采集单元安装在监测设备的节点上,对监测设备的异常信号进行传输感知,信号触发模块判断告警信号总数是否达到触发阈值,触发阈值的设定值为数据库中历史事件告警信号数的最小值,从而对达到触发阈值的告警信号进行触发故障点定位和处理操作;
13.s2:对于达到触发阈值的告警信号,故障特征集提取模块提取告警信号监测端口采集的故障特征数据集在数据库中查找与故障特征数据集适配的数据模型,计算采集的故障特征数据集与故障样本数据的相关值,并将相关值降序排布,以查找样品数据集合中与采集数据最相关的样品数据,将此最相关的样品数据设置为模型导入神经网络训练单元中计算其输出值,导出故障点的位置数据;
14.s3:警报单元对故障设备位置进行快速报警,故障位置输出单元向维修人员输出故障的具体位置,故障设备控制单元用于对故障设备进行控制反馈。
15.本发明进一步的改进在于,所述计算采集的故障特征数据集与故障样本数据的相关值,并将相关值降序排布,以查找样品数据集合中与采集数据最相关的样品数据的具体步骤为:
16.s201、将采集数据采集后,与数据库中的故障样本数据进行对比;
17.s202、计算采集的故障特征数据集与故障样本数据的相关值,并将相关值降序排布,以查找样品数据集合中与采集数据最相关的样品数据;
18.s203、将此最相关的样品数据设置为模型导入神经网络训练单元中计算其输出值。
19.本发明进一步的改进在于,所述相关值的计算策略公式为:,其中为中的第i项,为中对应的项。
20.本发明进一步的改进在于,所述神经网络训练单元中包括特定神经元的输出策略,所述特定神经元的输出策略公式为:,其中为n+1层p项神经元的输出,所述为第n层神经元i与n+1层p项神经元的连接权重,所述代表第n层神经元i的输出,所述代表线性关系的偏倚,所述代表sigmoid激活函数。
21.一种电子设备,包括存储器、处理器以及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现上述的一种基于神经网络的物联网故障检测控制方法。
22.一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现上述的一种基于神经网络的物联网故障检测控制方法。
23.与现有技术相比,本发明具有如下有益效果:
24.1)本发明的告警信号监测端口包括若干个异常信号采集单元,异常信号采集单元安装在监测设备的节点上,对监测设备的异常信号进行传输感知,同时引入神经网络训练
单元采用深度学习的方式根据输入的告警信号信息导出故障点的位置数据,控制反馈端口包括警报单元、故障位置输出单元和故障设备控制单元,警报单元对故障设备位置进行快速报警,故障位置输出单元向维修人员输出故障的具体位置,故障设备控制单元用于对故障设备进行控制反馈,具有故障检测精度高和抗干扰能力强的优点;
25.2)本发明通过在数据库中查找与故障特征数据集适配的数据模型,计算采集的故障特征数据集与故障样本数据的相关值,并将相关值降序排布,以查找样品数据集合中与采集数据最相关的样品数据,将此最相关的样品数据设置为模型导入神经网络训练单元中计算其输出值,以进一步提高故障定位精度。
附图说明
26.图1为本发明一种基于神经网络的物联网故障检测控制系统的原理构架示意图;
27.图2为本发明一种基于神经网络的物联网故障检测控制系统的深入学习训练模块的框架的示意图;
28.图3为本发明一种基于神经网络的物联网故障检测控制系统的神经网络训练单元框架的示意图。
具体实施方式
29.为使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“一号”、“二号”、“三号”仅用于描述目的,而不能理解为指示或暗示相对重要性。下面结合具体实施方式,进一步阐述本发明。
30.实施例1
31.本实施例的告警信号监测端口包括若干个异常信号采集单元,异常信号采集单元安装在监测设备的节点上,对监测设备的异常信号进行传输感知,同时引入神经网络训练单元采用深度学习的方式根据输入的告警信号信息导出故障点的位置数据,控制反馈端口包括警报单元、故障位置输出单元和故障设备控制单元,警报单元对故障设备位置进行快速报警,故障位置输出单元向维修人员输出故障的具体位置,故障设备控制单元用于对故障设备进行控制反馈,具有故障检测精度高和抗干扰能力强的优点,具体方案为,一种基于神经网络的物联网故障检测控制方法,方法的具体步骤如下:
32.s1:异常信号采集单元安装在监测设备的节点上,对监测设备的异常信号进行传输感知,信号触发模块判断告警信号总数是否达到触发阈值,触发阈值的设定值为数据库中历史事件告警信号数的最小值,从而对达到触发阈值的告警信号进行触发故障点定位和处理操作;
33.s2:对于达到触发阈值的告警信号,故障特征集提取模块提取告警信号监测端口采集的故障特征数据集在数据库中查找与故障特征数据集适配的数据模型,计算采集的故障特征数据集与故障样本数据的相关值,并将相关值降序排布,以查找样品数据集合中与
采集数据最相关的样品数据,将此最相关的样品数据设置为模型导入神经网络训练单元中计算其输出值,导出故障点的位置数据;
34.s3:警报单元对故障设备位置进行快速报警,故障位置输出单元向维修人员输出故障的具体位置,故障设备控制单元用于对故障设备进行控制反馈。
35.在本实施例中,计算采集的故障特征数据集与故障样本数据的相关值,并将相关值降序排布,以查找样品数据集合中与采集数据最相关的样品数据的具体步骤为:
36.s201、将采集数据采集后,与数据库中的故障样本数据进行对比;
37.s202、计算采集的故障特征数据集与故障样本数据的相关值,并将相关值降序排布,以查找样品数据集合中与采集数据最相关的样品数据;
38.s203、将此最相关的样品数据设置为模型导入神经网络训练单元中计算其输出值。
39.在本实施例中,相关值的计算策略公式为:,其中为中的第i项,为中对应的项。
40.在本实施例中,神经网络训练单元中包括特定神经元的输出策略,特定神经元的输出策略公式为:,其中为n+1层p项神经元的输出,为第n层神经元i与n+1层p项神经元的连接权重,代表第n层神经元i的输出,代表线性关系的偏倚,代表sigmoid激活函数。
41.通过本实施例:告警信号监测端口包括若干个异常信号采集单元,异常信号采集单元安装在监测设备的节点上,对监测设备的异常信号进行传输感知,同时引入神经网络训练单元采用深度学习的方式根据输入的告警信号信息导出故障点的位置数据,控制反馈端口包括警报单元、故障位置输出单元和故障设备控制单元,警报单元对故障设备位置进行快速报警,故障位置输出单元向维修人员输出故障的具体位置,故障设备控制单元用于对故障设备进行控制反馈,具有故障检测精度高和抗干扰能力强的优点。
42.实施例2
43.实施例2在实施例1的基础上通过在数据库中查找与故障特征数据集适配的数据模型,计算采集的故障特征数据集与故障样本数据的相关值,并将相关值降序排布,以查找样品数据集合中与采集数据最相关的样品数据,将此最相关的样品数据设置为模型导入神经网络训练单元中计算其输出值,以进一步提高故障定位精度,如图1-图3所示,一种基于神经网络的物联网故障检测控制系统,包括数据库、深入学习训练模块、控制反馈端口、故障定位端口和告警信号监测端口,数据库用于储存历史故障样本数据信息,其中n为项数,为单个故障样本的故障采集信息,深入学习训练模块用于对故障定位模型进行深入学习训练,以对故障位置进行定位查找,告警信号监测端口用于采集设备组件运
行过程中的故障特征数据集,其中,为第n个故障告警信号信息,故障定位端口用于在深入学习训练模块的辅助下,对故障位置进行查找、输出,控制反馈端口用于对故障位置进行反馈,并根据数据库中的解决方案对故障设备进行控制反馈;
44.其中,故障定位端口包括故障特征集提取模块、信号触发模块、故障位置排列模块、定位模型提取模块、故障位置输出模块和信号传输模块,故障特征集提取模块用于提取告警信号监测端口采集的故障特征数据集,故障位置排列模块用于根据深入学习训练结果进行故障点的可能点输出并进行降序排列,定位模型提取模块用于对深入学习训练模块中的定位模型进行提取,故障位置输出模块用于输出查找的可能性最大的故障位置,信号传输模块用于系统各个模块之间的信号传输。
45.在本实施例中,告警信号监测端口包括若干个异常信号采集单元,异常信号采集单元安装在监测设备的节点上,对监测设备的异常信号进行传输感知,控制反馈端口包括警报单元、故障位置输出单元和故障设备控制单元,警报单元用于对故障设备位置进行快速报警,故障位置输出单元用于向维修人员输出故障的具体位置,故障设备控制单元用于对故障设备进行控制反馈。
46.在本实施例中,深入学习训练模块包括神经网络训练单元、故障代码输出单元和模型查找单元,神经网络训练单元包括输入层、若干个隐藏层和输出层,用于将输入的故障特征数据集转化为故障位置代码数据,其中表示训练单元第n1层的第m项,即输出层的第m项,上标代表项数,故障代码输出单元用于对故障代码进行输出,模型查找单元用于在数据库中查找本故障特征数据集适配的数据模型。
47.在本实施例中,模型查找单元中包括模型查找策略,模型查找策略具体步骤为:
48.1)将采集数据采集后,与数据库中的故障样本数据进行对比;
49.2)计算采集的故障特征数据集与故障样本数据的相关值,并将相关值降序排布,以查找样品数据集合中与采集数据最相关的样品数据;
50.3)将此最相关的样品数据设置为模型导入神经网络训练单元中计算其输出值。
51.在本实施例中,模型查找单元包括相关值的计算策略,相关值的计算策略公式为:,其中为中的第i项,为中对应的项。
52.在本实施例中,神经网络训练单元中包括特定神经元的输出策略,特定神经元的输出策略公式为:,其中为n+1层p项神经元的输出,为第n层神经元i与n+1层p项神经元的连接权重,代表第n层神经元i的输出,
代表线性关系的偏倚,代表sigmoid激活函数。
53.本发明进一步的改进在于,信号触发模块用于判断告警信号总数是否达到触发阈值,触发阈值的设定值为数据库中历史事件告警信号数的最小值,从而对达到触发阈值的告警信号进行触发故障点定位和处理操作,这样主要避免错误告警信号的干扰。
54.在本实施例中,数据库中还储存设备点故障的解决方案,在故障点查找完成后,其告警信号信息数据和故障点数据合并储存在数据库中。
55.在本实施例中,故障检测控制系统的具体定位步骤如下:
56.s101:异常信号采集单元安装在监测设备的节点上,对监测设备的异常信号进行传输感知,信号触发模块判断告警信号总数是否达到触发阈值,触发阈值的设定值为数据库中历史事件告警信号数的最小值,从而对达到触发阈值的告警信号进行触发故障点定位和处理操作;
57.s102:对于达到触发阈值的告警信号,故障特征集提取模块提取告警信号监测端口采集的故障特征数据集在数据库中查找与故障特征数据集适配的数据模型,计算采集的故障特征数据集与故障样本数据的相关值,并将相关值降序排布,以查找样品数据集合中与采集数据最相关的样品数据,将此最相关的样品数据设置为模型导入神经网络训练单元中计算其输出值,导出故障点的位置数据;
58.s103:警报单元对故障设备位置进行快速报警,故障位置输出单元向维修人员输出故障的具体位置,故障设备控制单元用于对故障设备进行控制反馈。
59.通过本实施例:在数据库中查找与故障特征数据集适配的数据模型,计算采集的故障特征数据集与故障样本数据的相关值,并将相关值降序排布,以查找样品数据集合中与采集数据最相关的样品数据,将此最相关的样品数据设置为模型导入神经网络训练单元中计算其输出值,以进一步提高故障定位精度。
60.实施例三
61.本实施例提供一种电子设备,包括:处理器和存储器,其中,存储器中存储有可供处理器调用的计算机程序;
62.处理器通过调用存储器中存储的计算机程序,执行上述的一种基于神经网络的物联网故障检测控制方法。
63.该电子设备可因配置或性能不同而产生比较大的差异,能够包括一个或一个以上的处理器(central processing units,cpu)和一个或一个以上的存储器,其中,该存储器中存储有至少一条计算机程序,该计算机程序由该处理器加载并执行以实现上述方法实施例提供的一种基于神经网络的物联网故障检测控制方法。该电子设备还能够包括其他用于实现设备功能的部件,例如,该电子设备还能够具有有线或无线网络接口以及输入输出接口等部件,以便进行数据的输入输出。本实施例在此不做赘述。
64.实施例四
65.本实施例提供一种计算机可读存储介质,其上存储有可擦写的计算机程序;
66.当计算机程序在计算机设备上运行时,使得计算机设备执行上述的一种基于神经网络的物联网故障检测控制方法。
67.例如,计算机可读存储介质能够是只读存储器(read-only memory,简称:rom)、随机存取存储器(random access memory,简称:ram)、只读光盘(compact disc read-only memory,简称:cd-rom)、磁带、软盘和光数据存储设备等。
68.专业人员应该还可以进一步意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
69.结合本文中所公开的实施例描述的方法或算法的步骤可以用硬件、处理器执行的软件模块,或者二者的结合来实施。软件模块可以置于随机存储器(ram)、内存、只读存储器(rom)、电可编程rom、电可擦除可编程rom、寄存器、硬盘、可移动磁盘、cd-rom、或技术领域内所公知的任意其它形式的存储介质中。
70.以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
技术特征:
1.一种基于神经网络的物联网故障检测控制系统,其特征在于:包括数据库、深入学习训练模块、控制反馈端口、故障定位端口和告警信号监测端口,所述数据库用于储存历史故障样本数据信息,其中n为项数,为单个故障样本的故障采集信息,所述深入学习训练模块用于对故障定位模型进行深入学习训练,以对故障位置进行定位查找,所述告警信号监测端口用于采集设备组件运行过程中的故障特征数据集,其中,为第n个故障告警信号信息,所述故障定位端口用于在深入学习训练模块的辅助下,对故障位置进行查找、输出,所述控制反馈端口用于对故障位置进行反馈,并根据数据库中的解决方案对故障设备进行控制反馈。2.根据权利要求1所述的一种基于神经网络的物联网故障检测控制系统,其特征在于:所述故障定位端口包括故障特征集提取模块、信号触发模块、故障位置排列模块、定位模型提取模块、故障位置输出模块和信号传输模块,所述故障特征集提取模块用于提取告警信号监测端口采集的故障特征数据集,所述故障位置排列模块用于根据深入学习训练结果进行故障点的可能点输出并进行降序排列,所述定位模型提取模块用于对深入学习训练模块中的定位模型进行提取,所述故障位置输出模块用于输出查找的可能性最大的故障位置,所述信号传输模块用于系统各个模块之间的信号传输。3.根据权利要求2所述的一种基于神经网络的物联网故障检测控制系统,其特征在于:所述告警信号监测端口包括若干个异常信号采集单元,所述异常信号采集单元安装在监测设备的节点上,对监测设备的异常信号进行传输感知,所述控制反馈端口包括警报单元、故障位置输出单元和故障设备控制单元,所述警报单元用于对故障设备位置进行快速报警,所述故障位置输出单元用于向维修人员输出故障的具体位置,所述故障设备控制单元用于对故障设备进行控制反馈。4.根据权利要求3所述的一种基于神经网络的物联网故障检测控制系统,其特征在于:所述深入学习训练模块包括神经网络训练单元、故障代码输出单元和模型查找单元,所述神经网络训练单元包括输入层、若干个隐藏层和输出层,用于将输入的故障特征数据集转化为故障位置代码数据,其中表示训练单元第n1层的第m项,即输出层的第m项,其中下标代表层数,上标代表项数,所述故障代码输出单元用于对故障代码进行输出,所述模型查找单元用于在数据库中查找本故障特征数据集适配的数据模型。5.根据权利要求4所述的一种基于神经网络的物联网故障检测控制系统,其特征在于:所述信号触发模块用于判断告警信号总数是否达到触发阈值,触发阈值的设定值为数据库中历史事件告警信号数的最小值,从而对达到触发阈值的告警信号进行触发故障点定位和处理操作。6.根据权利要求5所述的一种基于神经网络的物联网故障检测控制系统,其特征在于:所述数据库中还储存设备点故障的解决方案,在故障点查找完成后,其故障特征数据集和
故障点数据合并储存在数据库中。7.一种基于神经网络的物联网故障检测控制方法,其基于如权利要求6所述的一种基于神经网络的物联网故障检测控制系统实现,其特征在于:所述方法的具体步骤如下:s1:异常信号采集单元安装在监测设备的节点上,对监测设备的异常信号进行传输感知,信号触发模块判断告警信号总数是否达到触发阈值,触发阈值的设定值为数据库中历史事件告警信号数的最小值,从而对达到触发阈值的告警信号进行触发故障点定位和处理操作;s2:对于达到触发阈值的告警信号,故障特征集提取模块提取告警信号监测端口采集的故障特征数据集,在数据库中查找与故障特征数据集适配的数据模型,计算采集的故障特征数据集与故障样本数据的相关值,并将相关值降序排布,以查找样品数据集合中与采集数据最相关的样品数据,将此最相关的样品数据设置为模型导入神经网络训练单元中计算其输出值,导出故障点的位置数据;s3:警报单元对故障设备位置进行快速报警,故障位置输出单元向维修人员输出故障的具体位置,故障设备控制单元用于对故障设备进行控制反馈。8.根据权利要求7所述的一种基于神经网络的物联网故障检测控制方法,其特征在于:所述计算采集的故障特征数据集与故障样本数据的相关值,并将相关值降序排布,以查找样品数据集合中与采集数据最相关的样品数据的具体步骤为:s201、将采集数据采集后,与数据库中的故障样本数据进行对比;s202、计算采集的故障特征数据集与故障样本数据的相关值,并将相关值降序排布,以查找样品数据集合中与采集数据最相关的样品数据;s203、将此最相关的样品数据设置为模型导入神经网络训练单元中计算其输出值。9.根据权利要求8所述的一种基于神经网络的物联网故障检测控制方法,其特征在于:所述相关值的计算策略公式为:,其中为中的第i项,为中对应的项。10.根据权利要求9所述的一种基于神经网络的物联网故障检测控制方法,其特征在于:所述神经网络训练单元中的特定神经元的输出策略公式为:,其中为n+1层p项神经元的输出,所述为第n层神经元i与n+1层p项神经元的连接权重,所述代表第n层神经元i的输出,所述代表线性关系的偏倚,所述代表sigmoid激活函数。
技术总结
本发明公开了一种基于神经网络的物联网故障检测控制方法及系统,包括数据库、深入学习训练模块、控制反馈端口、故障定位端口和告警信号监测端口,所述数据库用于储存历史故障样本数据信息,所述深入学习训练模块用于对故障定位模型进行深入学习训练,以对故障位置进行定位查找,引入神经网络训练单元采用深度学习的方式根据输入的告警信号信息导出故障点的位置数据,控制反馈端口包括警报单元、故障位置输出单元和故障设备控制单元,警报单元对故障设备位置进行快速报警,故障位置输出单元向维修人员输出故障的具体位置,故障设备控制单元用于对故障设备进行控制反馈,具有故障检测精度高和抗干扰能力强的优点。测精度高和抗干扰能力强的优点。测精度高和抗干扰能力强的优点。
技术研发人员:梁新雨
受保护的技术使用者:山西绿柳科技有限公司
技术研发日:2023.08.23
技术公布日:2023/10/5
版权声明
本文仅代表作者观点,不代表航家之家立场。
本文系作者授权航家号发表,未经原创作者书面授权,任何单位或个人不得引用、复制、转载、摘编、链接或以其他任何方式复制发表。任何单位或个人在获得书面授权使用航空之家内容时,须注明作者及来源 “航空之家”。如非法使用航空之家的部分或全部内容的,航空之家将依法追究其法律责任。(航空之家官方QQ:2926969996)
航空之家 https://www.aerohome.com.cn/
飞机超市 https://mall.aerohome.com.cn/
航空资讯 https://news.aerohome.com.cn/