基于游标效应的串联式双芯光纤干涉传感解调系统

未命名 09-29 阅读:150 评论:0


1.本发明涉及的是一种基于游标效应的串联式双芯光纤干涉传感解调系统,属于光纤解调技术领域。


背景技术:

2.光学干涉测量技术是以光波干涉原理为基础的一门技术,在测量领域中获得了广泛应用。与一般的光学测量方法相比,光学干涉测量技术具有更高的灵敏度和精度。任何物理量,如弯曲、温度、应变、折射率、位移、振动、压力、温度等,只要能够通过光纤的光程差的变化表示出来,光纤干涉仪就能测量出该物理量的特性。
3.随着现代技术对传感器的要求日益增长,为了满足快速和具体的检测出机械、生物、化学等物质的物理特性的需求,促使了集成光波导传感器的快速发展。与普通的光纤传感器不同的是,集成光纤传感器可以很容易地小型化,因此有可能在一个很小的区域内进行大规模集成,以实现小型化的实验平台。在过去的几十年里,针对各种物理参数,获得了许多不同结构的光纤传感器。总的来说,这些传统的传感器可以满足物理参数检测的基本要求。
4.而近年来,某些特殊应用领域对光纤温度、应变传感器的灵敏度提出了更高要求,研究人员开始将游标效应作为一种增敏手段进一步应用于光学检测中。游标效应原本是游标卡尺中利用主尺与游标之间微小的刻度差异来提升测量灵敏度的一种现象,将游标效应用在光纤传感中,可以同时提高光纤干涉仪的灵敏度和动态范围。游标效应适用于具有周期性光谱的干涉仪,为了形成游标效应,一般将两个自由光谱范围接近的干涉仪级联。在级联后的光谱中,相位相同处对比度较高,相位相差π处对比度很低,从而形成一个大包络,灵敏度和动态范围都会明显放大,放大倍数取决于动态范围接近程度。
5.专利cn 113959606 a中提出了一种基于级联增强游标效应的混合型横向压力传感器,将fabry-perot干涉仪和michelson干涉仪级联,fabry-perot干涉仪作为参考部分,michelson干涉仪作为传感部分,在制作时控制两个干涉仪的自由光谱范围,使两个干涉信号叠加,形成游标效应。当外界环境变化使fabry-perot干涉仪和michelson干涉仪的干涉条纹向相反方向移动时,大干涉包络呈现出增强游标效应,通过对干涉谱提取、解调,实现对横向压力的测量。
6.专利cn 110057389 a提出了一种基于边孔光纤双马赫曾德干涉游标效应的光纤传感器,其利用单模光纤,无芯光纤及边孔光纤构成了双马赫曾德结构。沿单模光纤传输的光经无芯光纤进入边孔光纤的纤芯、与外界环境连通的孔以及封闭的孔。这三路光在第二个无芯光纤处合并,再经单模光纤传输至光谱仪。边孔光纤的纤芯同时与两个孔的光发生干涉,形成双马赫曾德干涉仪,纤芯与封闭的孔所构成的干涉仪作为参考部分,与外界环境连通的孔构成的干涉仪作为传感部分。所构成的折射率传感器具有超高的灵敏度。
7.但现阶段所制备的实现光纤游标效应的传感器都是无源光纤器件,光谱不可调节。且解调手段都是应用光谱仪等大型设备,先提取光谱再进行数据分析处理,成本高昂,
体积庞大,解调过程较为复杂。


技术实现要素:

8.本发明的目的在于提供一种基于游标效应的串联式双芯光纤干涉传感解调系统,该系统省去了光谱仪等大型解调设备,整体结构简单,集成度高,双干涉仪叠加产生了游标效应,灵敏度高,通过压电陶瓷控制电压进行解调,响应速度快。
9.为实现上述目的,本发明所采用的技术方案为:
10.一种基于游标效应的串联式双芯光纤干涉传感解调系统,该系统由光源、单模光纤、耦合器、双芯光纤、压电陶瓷、光电探测器、数据采集卡、数据处理单元和压电陶瓷控制系统组成。
11.所述的光源为窄线宽激光器,优选的为窄线宽可调谐激光器。
12.所述的双芯光纤具有两个纤芯,且两个纤芯在传输时不会发生耦合,根据实际的传感需求,制成干涉仪的双芯光纤两纤芯存在折射率差。
13.所述的耦合器为纤维集成耦合器,由单模光纤与双芯光纤焊接后采用熔融拉锥或热扩散等方式制成,起到分束与合束的作用。沿单模光纤传输的光经过耦合器后可以以特定的分光比将光分散到双芯光纤的两个纤芯中,沿两个纤芯传输的光经过另一个耦合器后合束,两束光发生干涉,以此构成双芯光纤mach-zehnder干涉仪。该系统中包含两个串联的双芯光纤mach-zehnder干涉仪。
14.所述的两个mach-zehnder干涉仪所使用的双芯光纤可以是同一种双芯光纤,也可以是两种不同类型的双芯光纤。两个双芯光纤mach-zehnder干涉仪中的一个缠绕在压电陶瓷上作为解调部分,另一个作为传感部分,用于探测外界环境参量,两个干涉仪通过单模光纤连接。
15.所述的压电陶瓷在施加电压后会发生形变,根据所探测传感参量的变化范围,所使用的压电陶瓷可以是单个的压电陶瓷,也可以由多个具有不同弹性系数的压电陶瓷组合而成。
16.光源发出的光经单模光纤传输至第一个干涉仪,该干涉仪的光谱可以通过压电陶瓷进行控制,用于信号的解调。第一个干涉仪输出的光沿单模光纤继续传输,经过第二个干涉仪,该干涉仪用于环境参量的测量。两个干涉仪的光谱进行叠加,形成游标效应,放大了传感的灵敏度。当所测参量变化时,引起传感干涉仪的光谱发生变化,导致最终输出的光信号发生改变,光电探测器对输出信号进行探测,数据采集卡将探测的结果传输至数据处理单元,数据处理单元对结果进行分析,然后反馈至压电陶瓷控制系统,压电陶瓷控制系统调节施加到电陶瓷上的电压,改变解调干涉仪的干涉谱,使最终探测到的信号与初始信号相同,利用预先标定得到的电压-传感量曲线,通过读取施加电压实现传感信号的解调。
17.本发明所使用的原理为:
18.根据干涉原理,沿双芯光纤传输的两束光的相位差为
19.式中:n1,n2分别表示纤芯的折射率,l1,l2分别表示两臂纤芯的长度。假定耦合器的分光比为一比一,最终得到的干涉谱光强可以如下式表示:
20.式中i0为干涉仪入射光的光强,i为出射光光强,可以看到,光谱呈周期性变化,光谱波峰处的波长满足条件n1l
1-n2l2=mλ
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(3)
21.mach-zehnder干涉仪的两个重要参数,一个是自由光谱范围(free spectral range,fsr),另一个是灵敏度。所谓fsr是指干涉谱中相邻两个波峰的波长差,因此由式(3)可得
22.mach-zehnder干涉仪的灵敏度是指在外部传感量的单位变化下,光谱漂移的程度,一般是通过追踪光谱中的某个峰或谷来确定。灵敏度与所测传感量有关,假定外部传感量发生了变化,其光谱的波峰也会发生漂移,新的波峰为λ',其对应的光程差为(n1l
1-n2l2)',它们同样满足式(3),可表示为:(n1l
1-n2l2)

=mλ
′ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(5)
23.由式(3)和式(5)可得:
24.其中,δλ=λ'-λ,表示波长漂移量;δ(n1l
1-n2l2)=(n1l
1-n2l2)'-(n1l
1-n2l2),表示光程差变化量,也就是外界环境变化引起的光纤光程的变化。
25.而当两个干涉仪级联后,两个mach-zehnder干涉仪的相位差分别为和输入的光信号依次通过两个干涉仪,此结构最终的透过率可以用两干涉仪的透过率相乘得到,透射率t可以表示为:
26.经数学变换,透射率可以写为如下形式:
27.这里,和都与波长及光程差相关,可以表示为都与波长及光程差相关,可以表示为opd1和opd2分别是两干涉仪中的光程差。如果两个干涉仪的光程差相近,那么可以看作一个高频周期函数,可以看作低频周期函数。由此可见,最终的光谱包含一个高频精细谱,由决定。此外,还包含一个低频包络,主要由决定。由式(8)可知,当为1或-1且与正负号相同时,光谱处于它的上包络上,即其上包络的包络线(env)可由下式描写:
28.对于级联后干涉仪的光谱,fsr是指包络上两相邻波峰的波长差,由式(3)和(4)可知,两干涉仪的光程差直接对应着两干涉仪的fsr,于是通过代换,可以得到级联mach-zehnder干涉仪的fsr与两个独立的干涉仪的fsr之间的关系为
29.其中,fsr1和fsr2分别是两干涉仪的动态范围,对比式(4),可知动态范围被放大,相比第一个m-z干涉仪,其放大系数为:
30.在作传感应用时,保持一个干涉仪为参考干涉仪,不施加外界影响,另一个干涉仪做传感干涉仪,感受外界环境变化。环境变化后,包络出现漂移,通过上述分析,可以看出级联mach-zehnder干涉仪的灵敏度被放大了。
31.串联式双mach-zehnder干涉仪形成的游标效应灵敏度受到两个干涉仪自由光谱范围的影响,两个干涉仪的fsr越相近,放大系数m值越大。但在实际制备时,很难保证两个干涉仪的fsr达到预期值,因此,在整个传感系统制备完成后,可以预先对压电陶瓷施加一个电压,使缠绕在压电陶瓷上的干涉仪的fsr接近传感干涉仪的fsr,最终达到预期的m值。
32.在使用本发明进行解调前要对系统进行标定,得到电压-传感量的相关曲线。在进行测量时,光源发出的光经过级联干涉以后被光电探测器探测到,经数据采集卡上传至数据处理单元,数据处理单元记录下初始信号;当外界环境变化时,级联的干涉谱发生漂移,光电探测器探测到的信号发生变化,数据处理单元对信号进行分析,将结果反馈至压电陶瓷控制单元控制施加到压电陶瓷上的电压,压电陶瓷会使上面缠绕的干涉仪光谱发生改变,引起级联干涉谱的改变,最终使探测到的信号与初始信号相同,读取施加的电压,根据标定的曲线得到传感量的变化量,实现解调功能。
33.本发明的有益效果为:
34.1、使用压电陶瓷调控手段实现解调,不需使用光谱仪等大型设备,提高了系统的集成度,简化了解调过程中的数据运算;
35.2、解调干涉仪和传感干涉仪级联构成了游标效应,通过预先对压电陶瓷施加电压,可以调节干涉仪的自由光谱范围,实现了灵敏度的放大倍率可控;
36.3、两个级联干涉仪通过单模光纤连接,可以相距较远的距离,解决了参考干涉仪易受传感量影响的问题。
附图说明
37.图1是基于游标效应的串联式双芯光纤干涉传感解调系统结构示意图;
38.图2(a)是非对称双芯光纤结构示意图,图2(b)是对称双芯光纤结构示意图;
39.图3是热扩散耦合式干涉仪光束传输示意图;
40.图4(a)是传感干涉仪光谱,图4(b)是解调干涉仪光谱;
41.图5是两干涉仪叠加后的光谱。
42.图中:1、光源;2、单模光纤;3-1、3-2、3-3、3-4、耦合器;4、双芯光纤,4-1、非对称双芯光纤,4-1-1、非对称双芯光纤边芯,4-1-2、非对称双芯光纤中间芯,4-2、对称双芯光纤,4-2-1、4-2-2、对称双芯光纤纤芯;5、压电陶瓷;6、光电探测器;7、数据采集卡;8、数据处理单元;9、压电陶瓷控制器。
具体实施方式
43.为使本发明的目的、技术方案和优点更加清楚,下面将结合附图,对本发明的技术方案进行清楚、完整的描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的实施例,本领域普通技术人员在没有去做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
44.本发明公开了一种基于游标效应的串联式双芯光纤干涉传感解调系统,以双mach-zehnder干涉仪串联为例,其结构如图1所示,由光源、单模光纤、耦合器、双芯光纤、压电陶瓷、光电探测器、数据采集卡、数据处理单元和压电陶瓷控制系统组成。所述的双芯光纤包含两个纤芯,典型的双芯光纤纤芯排布如图2所示,图2(a)为非对称式双芯光纤,图2(b)为对称式双芯光纤。本实施例所使用的双芯光纤为非对称式双芯光纤,两个纤芯的折射率为1.4652和1.4625,传感干涉仪所用双芯光纤光纤的长度为10cm。
45.首先进行双芯光纤干涉仪的制备,本实施例采用热扩散技术制备耦合器,首先将单模光纤与双芯光纤对芯焊接,因为采用的是非对称双芯光纤,中间芯可以完全与单模光纤对芯连接,因此在进行热扩散时可以采用对双芯光纤加热的方式。将一段双芯光纤放入炉子加热区中心轴上进行热扩散处理,经过一定时间的加热,双芯光纤热扩散区的中纤芯掺杂剂的浓度分布渐变为准高斯分布,以实现光束的耦合,如图3所示。炉子加热区的长度通常在厘米量级以上,保证梯度温度场中的折射率缓慢变化为准高斯分布。在进行热扩散时,使用光束分析仪进行实时监测,当两纤芯的分光比为1:1时停止加热。以此方式在两段双芯光纤上各制作两个耦合区,以实现两个mach-zehnder干涉仪的制备。
46.将其中一个干涉仪作为解调干涉仪,缠绕在压电陶瓷上;另一个作为传感干涉仪,用于对外界参量的测量。传感干涉仪的光谱如图4(a)所示,fsr1为9.0nm。调整压电陶瓷施加的电压,改变解调干涉仪的光谱,使fsr2为8.1nm如图4(b)所示,此时两干涉仪的fsr相近。通过单模光纤将两干涉仪串联,两个干涉仪叠加形成游标效应,叠加后的光谱如图5所示,此时叠加后光谱包络的fsr约为80nm。采用可调谐窄线宽光源作为入射光源,调节光源波长,使入射波长为叠加后光谱输出强度最大处的波长,如图5中圆圈所指示的波长。
47.对将各部分按图1所示进行连接,在进行传感测量前要先对整个系统进行标定。在标定时,首先记录下环境参量未发生变化时,光电探测器探测到的光强度并记录,作为初始值;然后对传感干涉仪施加确定的传感变化量,此时光电探测器探测到的光强度会发生变化,数据采集卡将探测的数据上传至数据处理单元,数据处理单元通过压电陶瓷控制器对压电陶瓷施加电压,改变解调干涉仪的光谱,使光电探测器探测到的信号发生变化,通过调整施加电压,最终使探测到的信号与初始值相同,记录下该传感量下的电压值,通过改变传感参量的变化量,最终得到施加电压与传感变化量的相关曲线,实现系统的标定。
48.在使用本系统进行传感测量时,将传感光纤置于所需探测的环境中,当测量环境发生变化时,探测信号发生变化,通过不断调整施加电压,最终使探测到的信号与初始值相同,读取此时的电压值,通过预先标定的曲线确定环境的变化量。

技术特征:
1.基于游标效应的串联式双芯光纤干涉传感解调系统,其由光源、单模光纤、耦合器、双芯光纤、压电陶瓷、光电探测器、数据采集卡、数据处理单元和压电陶瓷控制系统组成;双芯光纤通过耦合器组成两个串联的mach-zehnder干涉仪,其中一个干涉仪通过压电陶瓷进行控制,用于系统解调,另一个干涉仪用于传感;光源发出的光经单模光纤传输至解调干涉仪,后沿单模光纤继续传输,经过传感干涉仪后,两个干涉仪的光谱进行叠加,形成游标效应,放大了传感的灵敏度;当所测参量变化时,输出的光信号发生变化,光电探测器对输出信号进行探测,数据采集卡将探测的结果传输至数据处理单元,数据处理单元对结果进行分析,反馈至压电陶瓷控制系统,压电陶瓷控制系统调节施加到电陶瓷上的电压,使得第一个干涉仪的干涉谱发生变化,使最终探测到的信号与初始信号相同,利用预先标定得到的电压-传感量曲线,通过施加电压实现传感信号的解调。2.根据权利要求1所述的基于游标效应的串联式双芯光纤干涉传感解调系统,其特征是:所述的光源为窄线宽可调谐激光器。3.根据权利要求1所述的基于游标效应的串联式双芯光纤干涉传感解调系统,其特征是:所述的两个串联mach-zehnder干涉仪所使用的双芯光纤可以是同一种双芯光纤,也可以是两种不同类型的双芯光纤。4.根据权利要求1所述的基于游标效应的串联式双芯光纤干涉传感解调系统,其特征是:所述的压电陶瓷由单个的压电陶瓷构成或由多个不同弹性系数的压电陶瓷组合而成。

技术总结
本发明提供的是一种基于游标效应的串联式双芯光纤干涉传感解调系统。它由光源、单模光纤、耦合器、双芯光纤、压电陶瓷、光电探测器、数据采集卡、数据处理单元和压电陶瓷控制系统组成。两段双芯光纤通过耦合器构成串联式双Mach-Zehnder干涉仪,光谱叠加形成游标效应。一个干涉仪缠绕在压电陶瓷上用于信号解调,另一个干涉仪用于对外界参量测量。当传感信号发生变化时,数据处理单元对采集到的信号进行分析,并反馈给压电陶瓷控制系统,控制系统调节施加到压电陶瓷的电压,使信号回到初始状态。本发明通过对压电陶瓷施加电压实现干涉仪的解调,简化了解调系统,同时双干涉仪光谱叠加产生游标效应,增加了系统的灵敏度,可用于光纤信号解调技术领域。纤信号解调技术领域。纤信号解调技术领域。


技术研发人员:苑立波 王洪业 王剑
受保护的技术使用者:桂林电子科技大学
技术研发日:2023.03.13
技术公布日:2023/9/25
版权声明

本文仅代表作者观点,不代表航家之家立场。
本文系作者授权航家号发表,未经原创作者书面授权,任何单位或个人不得引用、复制、转载、摘编、链接或以其他任何方式复制发表。任何单位或个人在获得书面授权使用航空之家内容时,须注明作者及来源 “航空之家”。如非法使用航空之家的部分或全部内容的,航空之家将依法追究其法律责任。(航空之家官方QQ:2926969996)

航空之家 https://www.aerohome.com.cn/

飞机超市 https://mall.aerohome.com.cn/

航空资讯 https://news.aerohome.com.cn/

分享:

扫一扫在手机阅读、分享本文

相关推荐