内燃机预热装置的制作方法

未命名 09-29 阅读:128 评论:0


1.本发明涉及一种内燃机预热装置。


背景技术:

2.日本特开第2010-112296号公报提出了对催化剂加温以活化催化剂。


技术实现要素:

3.诸如hev(混合动力电动车辆)或phev(插电式混合动力电动车辆)的车辆的发动机不在其马达被驱动的状态下操作。通过在发动机停止的同时对催化剂加温,即使在马达驱动状态刚切换到发动机驱动状态之后也能够良好地减少废气。另一方面,存在刚切换到发动机驱动状态后发动机的温度较低且发动机的操作性能降低的问题。
4.鉴于这些问题做出了本发明,并且本发明的一个目的是提供一种内燃机预热装置,该预热装置在发动机停止时,在催化剂被加热器加温的情况下能够有效地预热发动机。
5.本发明的一个方面提供了一种内燃机预热装置,包括:后处理装置,该后处理装置具有催化剂,并在从发动机排放的排气所通过的排气通道中去除废气中的氮氧化物;加热器,该加热器在排气通道上设置在后处理装置的上游;循环通道,通过后处理装置的空气在该循环通道中被送回到加热器的上游侧;送风机,该送风机将被加热器加热的空气送至后处理装置;冷却剂流路,发动机的冷却剂在该冷却剂流路中流动;热交换器,该热交换器通过在通过后处理装置的加热空气和冷却剂之间进行热交换来对冷却剂流路中的冷却剂加温;以及控制加热器和送风机的操作的控制装置,其中,在发动机停止的状态下,该控制装置使加热器和送风机操作,并使由加热器加热的空气供给到后处理装置和热交换器。
6.在后处理装置中的催化剂的温度等于或低于预定阈值的情况下,控制装置可以使加热器和送风机操作。
7.热交换器可以设置在排气通道上,循环通道可以包括在位于热交换器的上游的部分处从排气通道分支的第一分支通道,内燃机预热装置还可以包括第一阀,该第一阀设置在第一分支通道从排气通道分支的部分处,并在加热空气流过第一分支通道的状态和加热空气流过排气通道的状态之间切换,并且在加热空气被供给到后处理装置和热交换器的状态下,发动机的温度超过预定阈值时,控制装置可以控制第一阀,并使加热空气流过第一分支通道并在循环通道中循环。
8.在加热空气被供给到后处理装置和热交换器的状态下,发动机的温度超过预定阈值时,控制装置可以控制第一阀,并使加热空气仅流过第一分支通道并在循环通道中循环。
9.热交换器可以设置在排气通道上,循环通道可以包括在位于热交换器下游的部分处从排气通道分支的第二分支通道,内燃机预热装置还可以包括第二阀,该第二阀设置在第二分支通道从排气通道分支的部分处,并在加热空气流过第二分支通道的状态和加热空气流过排气通道的状态之间切换,并且控制装置可以控制第一阀和第二阀,将第一阀切换到加热空气流过排气通道的状态,并在使加热器和送风机操作之前将第二阀切换到加热空
气流过第二分支通道的状态,然后使加热器和送风机操作,从而将加热空气供给到后处理装置和热交换器。
10.循环通道可以是第一循环通道并位于涡轮增压器的下游和加热器的上游,通过后处理装置的空气在该第一循环通道中被送回到排气通道上的位置,并且该第一循环通道上可以设置气泵作为送风机。
11.循环通道可以是第二循环通道,通过后处理装置的空气在该第二循环通道中被送回到涡轮增压器的进气通道,热交换器可以是设置在第二循环通道上的低压egr冷却器。
12.本发明的优点在于,能够提供一种内燃机预热装置,在发动机停止的状态下,通过加热器对催化剂进行加温,该内燃机预热装置能够有效地预热发动机。
附图说明
13.图1是示出根据本发明的实施例中的内燃机的构造的示图。
14.图2是发动机停止状态下的预热装置所执行的预热操作的流程图。
15.图3是示出本发明的另一实施例中的内燃机的构造的示图。
16.附图标记说明
17.1:空气滤清器
18.2:涡轮增压器
19.3:第一增压空气冷却器
20.4:电动增压器
21.5:第二增压空气冷却器
22.6:发动机
23.7:egr管段
24.7a:egr冷却器
25.10:预热装置
26.10a:预热装置
27.11:加热器
28.12:后处理装置
29.13:热交换器
30.14:气泵
31.15:控制装置
32.16:lp-egr冷却器
33.100:内燃机
34.ecu:发动机
35.l:冷却剂流路
36.p1:进气通道
37.p2:通道
38.p3:通道
39.p4:通道
40.p5:通道
41.p6:排气通道
42.p7:循环通道
43.p7-1:第一分支通道
44.p7-2:第二分支通道
45.p7-3:通道
46.p8:循环通道
47.t1:温度传感器
48.t2:温度传感器
49.v1:第一阀
50.v2:第二阀
51.va:阀
52.vb:阀
53.vc:阀
具体实施方式
54.《第一实施例》
55.(内燃机100概览)
56.图1是示出根据本发明的实施例中的内燃机100的构造的示图。图1中的箭头表示空气流动。作为示例,内燃机100是搭载于诸如hev(混合动力电动车辆)或phev(插电式混合动力电动车辆)的车辆的内燃机。
57.内燃机100主要包括空气滤清器1、涡轮增压器2、第一增压空气冷却器3、电动增压器4、第二增压空气冷却器5、发动机6、egr管段7和预热装置10。
58.由于发动机6操作时的空气流动基本上类似于这种类型的内燃机中的典型空气流动,因此仅简单地说明空气流动。在发动机6操作期间,吸入车辆的空气通过空气滤清器1、涡轮增压器2、第一增压空气冷却器3、电动增压器4和第二增压空气冷却器5,并供给到发动机6。发动机6排出的部分废气通过egr管段7被送回到发动机6的供气侧。发动机6排出的另一部分废气通过涡轮增压器2,然后流入预热装置10。
59.如稍后详细描述的,根据本实施例的内燃机100的特征之一是预热装置10形成在发动机6的排气侧。当发动机6停止时,预热装置10使加热器11和气泵14操作,将由加热器11加热后的空气供给到后处理装置12和热交换器13。由此,后处理装置12中的催化剂被加温。此外,冷却剂流路l中的发动机冷却剂也被加温,因此发动机6也被预热。
60.根据这样的构造,可以在发动机6停止的同时对后处理装置12中的催化剂加温,并将催化剂的温度升高到活化温度。另外,通过使用用于对后处理装置12中的催化剂加温的能量来对发动机冷却剂加温,可以有效地预热发动机6。
61.(各部分的构造)
62.下面说明内燃机100的每个部分。空气滤清器1是去除吸入发动机6的空气中的异物的过滤器。从空气滤清器1吸入的空气通过进气通道p1被供给到涡轮增压器2。
63.涡轮增压器2通过使用发动机6的排气使涡轮旋转从而压缩通过进气通道p1吸入的空气。通过将由涡轮增压器2压缩的空气供给到发动机6,发动机6在一个燃烧冲程中产生
的扭矩增加。
64.第一增压空气冷却器3冷却已经被涡轮增压器2压缩并具有增加的温度的空气。由于空气被冷却,所以发动机6吸入的空气的密度增加。
65.电动增压器4是向发动机6供给由未描绘的马达的驱动力压缩的压缩空气的装置。电动增压器4设置在连接第一增压空气冷却器3和第二增压空气冷却器5的通道p2上。在电动增压器4不向发动机6供给压缩空气的状态下,电动增压器4禁止空气通过电动增压器4。因此,在这种状态下,空气不是通过通道p2而是通过作为旁路通道的通道p3供给到第二增压空气冷却器5。阀va设置在通道p3上。例如,阀va是电磁阀,切换通道p3的开闭状态。具体而言,阀va在空气通过该通道的状态和空气不通过该通道的状态之间切换该通道的开闭状态。
66.在发动机6停止的状态下,电动增压器4通过egr管段7向发动机6的排气侧供给压缩空气。电动增压器4作为预热装置10的送风机发挥作用的示例在第二实施例中说明。
67.第二增压空气冷却器5冷却发动机6吸入的空气。例如,发动机6通过将由诸如轻油的液体燃料的燃烧引起的汽缸的往复运动转换成旋转力来产生驱动力。图1示出了4缸柴油发动机的示例。
68.egr管段7是用于将发动机6的部分废气送回发动机6的供气侧的结构部分。egr管段7具有通道p4、通道p5、egr冷却器7a、阀vb和阀vc。通道p4和通道p5并联设置,连接发动机6的供气侧和排气侧。
69.egr冷却器7a设置在通道p4上,并冷却从发动机6的排气侧送回到供气侧的废气。阀vb设置在通道p5上。例如,阀vb是电磁阀,在空气通过通道p5的状态和空气不通过通道p5的状态之间切换通道p5的开闭状态。阀vc在空气通过egr管段7中的通道的状态和空气不通过该通道的状态之间切换该通道的开闭状态。
70.通过这样构造的egr管段7将部分废气送回到发动机6的进气侧,发动机6中燃烧时的最高温度降低。结果,氮氧化物的产生量减少。在发动机6停止的状态下,来自电动增压器4的压缩空气可以通过通道p5被供给到发动机6的排气侧。
71.(关于预热装置10)
72.预热装置10主要具有排气通道p6、加热器11、后处理装置12、循环通道p7、第一阀v1、第二阀v2、热交换器13、冷却剂流路l、气泵14和控制装置15。
73.排气通道p6是来自发动机6的废气在其中流动的通道。加热器11、后处理装置12和热交换器13从上游侧开始依次设置在排气通道p6上。排气通道p6的终端部暴露在大气中,通过涡轮增压器2的废气从排气通道p6的终端部向大气排放。
74.加热器11加热在排气通道p6中流动的空气。加热器11在排气通道p6上位于后处理装置12的上游。作为示例,加热器11是电热盘管加热器。加热器11由来自未描绘的电源的电力驱动。加热器11的操作由控制装置15控制。加热器11将空气加热到足够的温度,使得当加热空气通过后处理装置12时,催化剂被加温到等于或高于催化剂的活化温度的温度。
75.后处理装置12具有催化剂,并在排气通道p6上去除废气中的氮氧化物。在图1的示例中,后处理装置12包括doc 12a和scr 12b。
76.doc(柴油氧化催化剂)12a包括贵金属催化剂,并氧化来自发动机6的排气中的未燃烧气体。doc 12a氧化碳氢化合物、一氧化碳和氮氧化物。
77.scr(选择性催化还原剂)12b去除发动机6的排气中的氮氧化物。例如,scr 12b是选择性还原催化剂,其通过使用还原剂选择性地还原排气中的氮氧化物,从而去除氮氧化物。
78.在发动机6刚启动后,后处理装置12中的催化剂的温度低于催化剂的活化温度。因此,为了提高氮氧化物的去除效率,预热装置10使用加热器11对后处理装置12内的催化剂进行加温。
79.循环通道p7是将通过后处理装置12的空气送回到加热器11的上游侧的通道。循环通道p7相当于本发明中的第一循环通道。具体而言,循环通道p7具有第一分支通道p7-1、第二分支通道p7-2和通道p7-3。第一分支通道p7-1是在位于热交换器13的上游的部分处从排气通道p6分支的通道。第二分支通道p7-2是在位于热交换器13的下游的部分处从排气通道p6分支的通道。通道p7-3是将来自第一分支通道p7-1的空气和来自第二分支通道p7-2的空气送回到排气通道p6的通道。另外,如后详述,第二分支通道p7-2作为旁路通道发挥作用,加热空气在旁路通道中被送回到加热器11的上游侧,而不是供给到热交换器13。
80.这样构造的循环通道p7是将通过后处理装置12的空气送回到排气通道p6上的位置的通道,并位于涡轮增压器2的下游和加热器11的上游。
81.第一阀vl设置在第一分支通道p7-1从排气通道p6分支的部分处。作为示例,第一阀v1为电磁阀。第一阀v1的操作由控制装置15控制。第一阀v1在通过第一阀v1的空气仅流过第一分支通道p7-1的状态(空气不流过位于阀v1下游的排气通道p6但空气流过第一分支通道p7-1的状态)与通过第一阀v1的空气仅流过排气通道p6的状态(空气不流过第一分支通道p7-1但空气流过位于阀v1下游的排气通道p6的状态)之间切换。
82.第二阀v2设置在第二分支通道p7-2从排气通道p6分支的部分处。作为示例,第二阀v2为电磁阀。第二阀v2的操作由控制装置15控制。第二阀v2在通过第二阀v2的空气仅流过第二分支通道p7-2的状态(空气不流过位于阀v2下游的排气通道p6但空气流过第二分支通道p7-2的状态)与通过第二阀v2的空气仅流过排气通道p6的状态(空气不流过第二分支通道p7-2但空气流过位于阀v2下游的排气通道p6的状态)之间切换。
83.热交换器13设置在排气通道p6上,通过后处理装置12并被加热器11加温的空气通过热交换器13。热交换器13具有对冷却剂流路l中的冷却剂加温的功能。具体而言,热交换器13在通过热交换器13的加热空气与流过冷却剂流路l的冷却剂之间进行热交换,从而对冷却剂流路l中的冷却剂进行加温。
84.冷却剂流路l是发动机冷却剂在其中流动的流路,本来是用于冷却发动机6的结构部分。在本实施例中,可以对发动机6进行加温,预热发动机6可以通过对冷却剂流路l中的冷却剂加温并将其供给到发动机6来执行。
85.尽管图中未示出,但是用于在冷却剂流路l中移动冷却剂的水泵可以设置在冷却剂流路l上。例如,水泵的操作由控制装置15控制。
86.气泵14设置在循环通道p7上,使由加热器11加热后的空气循环。气泵14是本发明中的送风机,将加热空气供给到后处理装置12。具体而言,气泵14设置在通道p7-3上。气泵14的操作由控制装置15控制。
87.控制装置15具有cpu(中央处理单元)和存储部。例如,控制装置15是ecu(发动机控制单元)。ecu可以是控制内燃机100的操作的发动机ecu或者可以是与发动机ecu分开设置
2和通道p7-3被送回到加热器11的上游侧。根据加热空气以这种方式循环通过排气通道p6和循环通道p7的构造,催化剂和冷却剂能够被有效地加温。
100.在发动机6被充分预热之后,没有必要将加热空气供给到热交换器13。鉴于此,在步骤s5中,控制装置15判定发动机的温度是否已经超过预定温度。具体而言,控制装置15基于来自温度传感器t2的输出值和作为阈值存储在存储部中的温度来判定发动机的温度是否已经超过预定温度。
101.在加热空气被供给到后处理装置12和热交换器13的状态下发动机6的温度已经超过预定阈值时(在步骤s5中为是),在步骤s6中,控制装置15使阀切换流路。具体而言,控制装置15使第一阀v1操作,切换为加热空气仅流过第一分支通道p7-1并在循环通道p7中循环的状态。即,在该状态下,加热空气不是供给到热交换器13,而是通过第一分支通道p7-1和通道p7-3在循环通道p7中循环。通过在发动机6以这种方式被充分预热的情况下不向热交换器13供给空气,可以通过有效地使用加温空气的能量来对催化剂加温。在步骤s5中的判定结果为否的情况下,重复步骤s5。
102.接下来,在步骤s7中,控制装置15判定后处理装置12中的催化剂的温度是否已经超过目标温度。具体而言,控制装置15判定温度传感器t1的输出值所指示的催化剂的温度是否已经超过存储于存储部中的催化剂的目标温度。
103.在催化剂的温度已经超过目标温度的情况下(在步骤s7中为是),在步骤s8中,控制装置15停止加热器11和气泵14的操作。在步骤s7中的判定结果为否的情况下,重复步骤s7。
104.通过上述一系列步骤,预热装置10对后处理装置12中的催化剂加温。此外,预热装置10通过对冷却剂流路l中的冷却剂加温来执行发动机6的预热。
105.(作用与优点)
106.如上所述,依照根据本实施例的预热装置10,在后处理装置12中的催化剂在发动机6的停止状态下被加热器11加温的情况下,发动机冷却剂也可以由被加热器11加热的空气加温。因此,可以通过有效地使用能量来执行发动机6的预热。
107.由于作为对后处理装置12中的催化剂加温的热源的加热器11被用作对冷却剂加温的热源,所以不需要提供与加热器11分开的热源,并且预热装置10的构造不会变得复杂。
108.在本实施例中,具体地,当后处理装置12中的催化剂和发动机冷却剂的预热开始之后发动机被充分预热时(参见步骤s5),流路通过使用第一阀v1被改变,加热空气循环通过第一分支通道p7-1、通道p7-3和排气通道p6。由于在该状态下不向热交换器13供给加热空气,因此加热空气的能量不用于对冷却剂加温,而是能够有效地预热后处理装置12中的催化剂。
109.由于在本实施例中设置了两个阀,即第一阀vl和第二阀v2,如图1所示,这些阀在控制装置15的控制下的操作可以在加热空气循环通过第二分支通道p7-2、通道p7-3和排气通道p6的状态与加热空气循环通过第一分支通道p7-1、通道p7-3和排气通道p6的状态之间切换。
110.同样,在本实施例中,用于使加热空气循环的送风机能够以包括循环通道p7和设置在循环通道p7上的气泵14的相对简单的构造形成。
111.尽管在上述说明中参照图1对内燃机100的具体构造进行了说明,但本发明并不一
定限于上述具体构造。例如,可以省略第一阀v1和/或第二阀v2。预热装置10可以在由加热器11加热的空气通过排气通道p6释放到大气中的同时实施对后处理装置12中的催化剂和发动机冷却剂进行加温的操作。
112.此外,冷却剂流路l可以设置有用于在车辆内部的空气和冷却剂之间进行热交换的热交换器。通过设置这样的热交换器,也可以在发动机6停止的同时使用用于对催化剂加温的空气有效地对车内加温。
113.《第二实施例》
114.图3是示出本发明的另一实施例中的内燃机的构造的示图。预热装置10a的构造与第一实施例不同,其他方面与第一实施例相同。
115.预热装置10a具有排气通道p6、加热器11、后处理装置12、循环通道p8、第二阀v2、lp-egr冷却器16、冷却剂流路l和控制装置15。与第一实施例的构造相比,热交换器13、气泵14、第一阀v1等在预热装置10a中被省略。由于该构造在其他方面类似于第一实施例的构造,所以省略第一实施例和第二实施例共同的说明。
116.循环通道p8是通过后处理装置12的空气被送回到涡轮增压器2的进气通道p1的通道。循环通道p8相当于本发明中的第二循环通道。
117.lp-egr(低压egr)冷却器16设置在循环通道p8上。lp-egr冷却器16是用于将排气送回到空气滤清器1和涡轮增压器2之间的通道的装置。在图2的构造中,lp-egr冷却器16也具有热交换器的功能。具体而言,通过在由加热器11加热的空气与冷却剂流路l中的发动机冷却剂之间进行热交换,lp-egr冷却器16对冷却剂加温,以预热发动机6。
118.如在第一实施例中,控制装置15使加热器11在发动机6停止的状态下操作,并加热空气,以对后处理装置12中的催化剂加温。在本实施例中,控制装置15还控制电动增压器4的操作。具体而言,控制装置15使电动增压器4操作,通过egr管段7向排气通道p6上的加热器11的上游侧供给压缩空气。
119.以这种方式供给到加热器11的上游侧的压缩空气由加热器11加热,并且与第一实施例一样,加热空气被供给到后处理装置12。由此,后处理装置12内的催化剂被加温。
120.通过后处理装置12的加热空气通过排气通道p6和第二阀v2流入循环通道p8。通过使加热空气流过lp-egr冷却器16,在加热空气和冷却剂流路l中的冷却剂之间进行热交换,冷却剂流路l中的冷却剂被加温。
121.由于循环通道p8在图3的构造中连接到进气通道p1,通过lp-egr冷却器16的空气被送回到涡轮增压器2的上游侧。此后,空气通过涡轮增压器2、第一增压空气冷却器3和电动增压器4,然后被沿着与上述类似的流路再次送回到加热器11的上游侧。
122.如上所述,在本发明中,送出由加热器11加热的空气的送风机并不一定限于气泵14,例如也可以是位于发动机6上游的电动增压器4。按照如图3所示的构造,具有不需要设置气泵14的优点。
123.注意,图3示出了不设置涡轮而是设置具有马达和压缩机的电动压缩机的构造示例。然而,电动助力涡轮增压器可以用于本发明。电动助力涡轮增压器是在压缩机和涡轮之间设置有马达的涡轮增压器,能够利用马达的驱动力来压缩空气。
124.《变型例》
125.在上述实施例中,通过使用用于预热后处理装置12中的催化剂的热量来对发动机
冷却剂加温以预热发动机6。在本发明的一种形式中,预热装置可以通过使用加温的冷却剂来对车辆内部加温。
126.尽管以上使用实施例对本发明进行了说明,但本发明的技术范围不限于上述实施例的记载范围,而是可以在要旨范围内进行各种变更。例如,关于装置分布/集成的具体实施例不限于上述实施例,可以将它们中的全部或部分以功能上或物理上分布/集成的方式设置在任何单元中。另外,本发明的实施例也包括将多个实施例中的任一个组合而生成的新的实施例。通过组合产生的新实施例的优点组合了原始实施例的优点。

技术特征:
1.一种内燃机预热装置,包括:后处理装置,所述后处理装置具有催化剂,并在从发动机排出的废气所通过的排气通道中除去所述废气中的氮氧化物;加热器,所述加热器在所述排气通道上设置在所述后处理装置的上游;循环通道,通过所述后处理装置的空气在所述循环通道中被送回到所述加热器的上游侧;送风机,所述送风机将由所述加热器加热的空气送至所述后处理装置;冷却剂流路,所述发动机的冷却剂在所述冷却剂流路中流动;热交换器,所述热交换器通过在通过所述后处理装置的加热空气和所述冷却剂之间进行热交换来对所述冷却剂流路中的冷却剂加温;以及控制装置,所述控制装置控制所述加热器和所述送风机的操作,其中在所述发动机停止的状态下,所述控制装置使所述加热器和所述送风机操作,并将由所述加热器加热的空气供给至所述后处理装置和所述热交换器。2.根据权利要求1所述的内燃机预热装置,其中,在所述后处理装置内的催化剂的温度等于或低于预定阈值的情况下,所述控制装置使所述加热器和所述送风机操作。3.根据权利要求1或2所述的内燃机预热装置,其中,所述热交换器设置在所述排气通道上,所述循环通道包括在位于所述热交换器上游的部分处从所述排气通道分支的第一分支通道,所述内燃机预热装置还包括第一阀,所述第一阀设置在所述第一分支通道从所述排气通道分支的部分处,并在加热空气流过所述第一分支通道的状态与所述加热空气流过所述排气通道的状态之间切换,以及在向所述后处理装置和所述热交换器供给所述加热空气的状态下,所述发动机的温度超过预定阈值时,所述控制装置控制所述第一阀,并使所述加热空气流过所述第一分支通道并在所述循环通道中循环。4.根据权利要求3所述的内燃机预热装置,其中,在向所述后处理装置和所述热交换器供给所述加热空气的状态下,所述发动机的温度超过所述预定阈值时,所述控制装置控制所述第一阀,并使所述加热空气仅流过所述第一分支通道并在所述循环通道中循环。5.根据权利要求3所述的内燃机预热装置,其中,所述热交换器设置在所述排气通道上,所述循环通道包括在位于所述热交换器下游的部分处从所述排气通道分支的第二分支通道,所述内燃机预热装置还包括第二阀,所述第二阀设置在所述第二分支通道从所述排气通道分支的部分处,并在所述加热空气流过所述第二分支通道的状态与所述加热空气流过所述排气通道的状态之间切换,以及所述控制装置控制所述第一阀和所述第二阀,将所述第一阀切换到所述加热空气流过所述排气通道的状态,在使所述加热器和所述送风机操作之前将所述第二阀切换到所述加热空气流过所述第二分支通道的状态,然后使所述加热器和所述送风机操作,以将所述加热空气供给到所述后处理装置和所述热交换器。
6.根据权利要求1或2所述的内燃机预热装置,其中,所述循环通道为第一循环通道并位于涡轮增压器的下游和所述加热器的上游,通过所述后处理装置的空气在所述第一循环通道中被送回到所述排气通道上的位置,并且所述第一循环通道上设置有气泵作为所述送风机。7.根据权利要求1或2所述的内燃机预热装置,其中,所述循环通道为第二循环通道,通过所述后处理装置的空气在所述第二循环通道中被送回到涡轮增压器的进气通道,并且所述热交换器为设置在所述第二循环通道上的低压egr冷却器。

技术总结
本发明涉及一种能够有效地预热发动机的内燃机预热装置。内燃机预热装置(10)包括:后处理装置(12);加热器(11),该加热器在排气通道上设置在后处理装置的上游;循环通道(p7),通过后处理装置(12)的空气在该循环通道中被送回到加热器(11)的上游侧;气泵(14),该气泵是将由加热器(11)加热的空气送至后处理装置(12)的送风机;冷却剂流路(L);热交换器(13);以及控制加热器(11)和送风机(14)的操作的控制装置(15),在发动机(6)停止的状态下,控制装置(15)使加热器(11)和气泵(14)操作,并使被加热器(11)加热的空气供给到后处理装置(12)和热交换器(13)。热交换器(13)。热交换器(13)。


技术研发人员:横井健
受保护的技术使用者:五十铃自动车株式会社
技术研发日:2023.03.16
技术公布日:2023/9/26
版权声明

本文仅代表作者观点,不代表航家之家立场。
本文系作者授权航家号发表,未经原创作者书面授权,任何单位或个人不得引用、复制、转载、摘编、链接或以其他任何方式复制发表。任何单位或个人在获得书面授权使用航空之家内容时,须注明作者及来源 “航空之家”。如非法使用航空之家的部分或全部内容的,航空之家将依法追究其法律责任。(航空之家官方QQ:2926969996)

航空之家 https://www.aerohome.com.cn/

航空商城 https://mall.aerohome.com.cn/

航空资讯 https://news.aerohome.com.cn/

分享:

扫一扫在手机阅读、分享本文

评论

相关推荐