一种用于广告投放的实时监控系统以及监控方法与流程
未命名
09-28
阅读:82
评论:0
1.本发明涉及广告播放监控领域,具体来说,尤其涉及一种用于广告投放的实时监控系统以及监控方法。
背景技术:
2.在互联网广告监控方面,特别是针对不同发布渠道,可以通过发布特定广告包进行追踪。这样,就可以统计和分析各个渠道的用户增长情况。此外,也可以在用户下载广告时统计广告的下载次数,以及追踪激活的用户数量。同时,与各大主要广告平台结合,可以实现不同维度的转化跟踪。
3.视频广告是一种广告形式,它在视频内容中设置和投放,无论是在互联网平台还是在各种广告终端上。这种广告形式因为其形象、直观、生动的特点,越来越受到广告主和用户的青睐。常见的视频广告形式有前贴广告、中插广告、后贴广告以及悬浮广告等,然而,虽然现有的广告监控系统可以监控广告载体和广告系统的状态,但是对于是否有人正在观看广告,观看的广告是否有效,以及观看的人群特征、观看时间和观看行为等重要因素,监控的能力却较为有限。
4.例如,有些系统可能只能追踪视频广告的播放次数,但无法准确知道这些播放量背后的用户行为,比如用户是否真的观看了广告,观看了多少时间,是否在观看过程中进行了互动等。同时,对于广告的效果评估,也多停留在曝光量和点击量这两个比较粗糙的指标上,无法深入到转化率、用户满意度、用户留存等更深层次的指标。
5.此外,对于不同的广告形式和广告内容,现有的监控系统也难以给出精确的效果评估。比如,同样是视频广告,前贴广告和中插广告的效果可能会有很大差异。同样的广告,在不同的用户群体和播放环境下,效果也可能有很大不同。
6.针对相关技术中的问题,目前尚未提出有效的解决方案。
技术实现要素:
7.为了克服以上问题,本发明旨在提出一种用于广告投放的实时监控系统以及监控方法,目的在于解决现有的监控系统也难以给出精确的效果评估问题。
8.为此,本发明采用的具体技术方案如下:根据本发明的一个方面,提供了一种用于广告投放的实时监控系统,该实时监控系统包括:数据采集模块、用户画像建立与行为分析模块、数据处理与行为模式发现模块、广告播放状况分析模块、广告质量监控模块、关键数据指标设定模块、数据可视化与预警机制模块及广告投放策略优化模块;所述数据采集模块,用于实时采集广告的各项数据和用户的行为数据,所述各项数据包括展示频次、点击数、下载量、使用时长和频率;所述用户画像建立与行为分析模块,用于获取用户的行为数据并建立用户画像,进行不同用户群的行为偏好分析;
所述数据处理与行为模式发现模块,用于利用xgboost算法和cnn模型处理用户画像和行为偏好分析的结果,获取用户的行为模式;所述广告播放状况分析模块,用于根据用户的行为模式,分析视频广告的播放情况、广告的接收情况和效果,同时考虑广告的形式和播放的频道;所述广告质量监控模块,用于应用深度学习技术对广告的图片和视频进行分析,检测广告内容中的缺陷,并对缺陷进行识别和处理;所述关键数据指标设定模块,用于根据广告的形式和播放的频道,设定广告运营关键数据指标;所述数据可视化与预警机制模块,用于根据关键数据指标,提供可视化的运营状况展示界面,并建立预警机制;所述广告投放策略优化模块,用于根据行为偏好分析的结果和预警机制的通知,进行广告投放策略的优化,所述策略的优化至少包括投放时间、频道选择、受众选择,以实现精准广告投放。
9.可选地,所述用户画像建立与行为分析模块包括:用户的行为数据获取模块、用户画像创建模块、用户分群模块及行为偏好分析模块;所述用户的行为数据获取模块,用于获取用户的行为数据,所述用户的行为数据至少包括用户在网站或应用上的浏览历史、搜索历史、点击历史和购买历史;所述用户画像创建模块,用于获取用户的行为特征,并根据用户的行为特征创建用户画像,所述用户的行为特征至少包括兴趣爱好、购买习惯、搜索习惯;所述用户分群模块,用于根据用户画像,按照年龄、性别和兴趣将用户划分成不同的群体;所述行为偏好分析模块,用于基于用户的行为数据和用户画像,对不同的群体的行为偏好进行分析。
10.可选地,所述数据处理与行为模式发现模块包括:数据整合模块、数据划分模块、xgboost模型训练模块、cnn模型训练模块、模型融合与优化模块及模型评估与行为识别模块;所述数据整合模块,用于对广告的各项数据、用户的行为数据以及行为偏好的分析结果进行整合,生成用户的特征数据和标签数据,所述特征数据至少包括用户的属性特征、兴趣特征和行为特征;所述数据划分模块,用于将特征数据和标签数据划分为训练集、验证集和测试集;所述xgboost模型训练模块,用于建立xgboost模型,并对训练集的特征数据和标签数据进行xgboost模型训练;所述cnn模型训练模块,用于建立cnn模型,并对训练集的特征数据进行cnn模型训练;所述模型融合与优化模块,用于使用验证集对xgboost模型和cnn模型进行单独评估,找到各自的最优超参数,并融合得到用户行为优化预测模型;所述模型评估与行为识别模块,用于利用测试集对用户行为优化预测模型的泛化能力和效果进行评估,并根据用户行为优化预测模型的评估结果,识别用户的行为模式。
11.可选地,所述模型融合与优化模块包括:xgboost模型调优模块、cnn模型调优模
块、融合模块及用户行为优化预测模型评估模块;所述xgboost模型调优模块,用于使用验证集对xgboost模型进行评估,调整xgboost模型的超参数,所述xgboost模型的超参数至少包括:树的深度和学习率,找到xgboost模型的最优超参数组合;所述cnn模型调优模块,用于使用验证集对cnn模型进行评估,调整cnn模型的超参数,所述cnn模型的超参数至少包括:卷积核数量、卷积核大小和池化核大小,找到cnn模型的最优超参数组合;所述融合模块,用于利用xgboost模型的最优超参数组合和cnn模型的最优超参数组合对xgboost模型和cnn模型进行预测,同时利用加权平均法,设定xgboost模型和cnn模型的权重,并根据权重将xgboost模型和cnn模型的预测结果进行融合,得到用户行为优化预测模型;所述用户行为优化预测模型评估模块,用于使用测试集对用户行为优化预测模型进行评估,验证用户行为优化预测模型的泛化能力和效果。
12.可选地,所述广告播放状况分析模块包括:广告播放的数据收集模块、描述性统计模块、用户反馈分析模块、用户行为分析模块、影响因素分析模块及广告投放策略模型构建模块;所述广告播放的数据收集模块,用于根据用户的行为模式,收集各项有关广告播放的数据,所述广告播放的数据至少包括广告的播放次数、播放时长、播放频道、广告形式、用户对广告的反馈和用户的浏览行为;所述描述性统计模块,用于对广告播放次数、播放时长进行描述性统计分析;所述用户反馈分析模块,用于对用户对广告的反馈进行深入分析,所述深入分析包括用户点击广告的频率、给广告点赞的次数和用户对广告的评论内容;所述用户行为分析模块,用于解析用户的浏览行为,所述浏览行为至少包括用户在广告播放页面的停留时间和用户是否选择跳过广告;所述影响因素分析模块,用于分析广告形式、播放频道对广告效果的影响,识别对广告效果影响最大的因素;所述广告投放策略模型构建模块,用于根据描述性统计分析、用户对广告的反馈、用户的浏览行为及播放频道对广告效果的影响的分析,使用决策树算法构建广告投放策略模型。
13.可选地,所述广告运营关键数据指标包括:广告被展示的次数、广告被点击的次数占展示次数的比例、广告引导用户下载某app次数、用户使用某app的时长、用户使用某app的频率、广告被点击的绝对次数、广告被点击后实际进行了下载app或购买商品的用户占点击用户的比例、用户实际使用某app的情况、用户观看视频广告至结束的比例、用户对广告的反馈和用户在广告页面的行为。
14.可选地,所述数据可视化与预警机制模块包括:设定指标模块、设定指标数据采集模块、设定指标阈值设定模块、数据可视化模块、预警机制模块及优化与改进模块;所述设定指标模块,用于从广告运营关键数据指标中选择设定指标,所述设定指标需能全面反映广告的运营情况;所述设定指标数据采集模块,用于实时采集被监控广告的设定指标的数据;
所述设定指标阈值设定模块,用于针对每个设定指标,设定正常范围的阈值;所述数据可视化模块,用于将采集到的指标数据通过图表进行可视化,以便运营人员能够直观地看到广告运营的状况;所述预警机制模块,用于当某个设定指标超出阈值范围时,立即触发预警,实时发送预警信息给相关人员;所述优化与改进模块,用于当出现预警时,分析导致数据超出阈值的原因,提出并实施相应的改进措施。
15.可选地,所述广告投放策略优化模块包括:用户行为偏好分析模块、问题定位与策略优化模块、策略实施模块及效果跟踪模块;所述用户行为偏好分析模块,用于对用户行为进行持续监测,不断收集用户行为数据,识别用户的最新偏好和习惯;所述问题定位与策略优化模块,用于根据用户行为数据和预警机制的通知,定位当前广告投放策略中的问题,并基于当前广告投放策略中的问题,优化广告投放策略;所述策略实施模块,用于将优化后的广告投放策略实施到实际运营中;所述效果跟踪模块,用于跟踪新的广告投放策略的效果,通过分析设定指标来评估广告效果是否达到预期;若未达到预期,则再次进行策略优化。
16.可选地,所述问题定位与策略优化模块包括:用户需求分析模块、市场环境研究模块、问题识别模块、策略优化设计模块及策略效果验证模块;所述用户需求分析模块,用于追踪用户行为数据,比较历史和当前数据,揭示用户的偏好趋势,得到用户需求的演变;所述市场环境研究模块,用于关注市场环境,所述市场环境至少包括竞品策略和行业发展趋势,并规避潜在风险;所述问题识别模块,用于基于用户行为数据和市场环境的分析,确定广告策略存在的问题;所述策略优化设计模块,用于从广告形式、内容、投放时间、频道和目标受众的方面思考和制定针对性的优化策略;所述策略效果验证模块,用于采用专家评审或用户调研的方式,预检新策略的效果,如未达预期,则调整优化策略。
17.根据本发明的另一个方面,还提供了一种用于广告投放的实时监控方法,所述实时监控方法包括以下步骤:s1、实时采集广告的各项数据和用户的行为数据,所述各项数据包括展示频次、点击数、下载量、使用时长和频率;s2、获取用户的行为数据并建立用户画像,进行不同用户群的行为偏好分析;s3、利用xgboost算法和cnn模型处理用户画像和行为偏好分析的结果,获取用户的行为模式;s4、根据用户的行为模式,分析视频广告的播放情况、广告的接收情况和效果,同时考虑广告的形式和播放的频道;s5、应用深度学习技术对广告的图片和视频进行分析,检测广告内容中的缺陷,并对缺陷进行识别和处理;
s6、根据广告的形式和播放的频道,设定广告运营关键数据指标;s7、根据关键数据指标,提供可视化的运营状况展示界面,并建立预警机制;s8、行为偏好分析的结果和预警机制的通知,进行广告投放策略的优化,所述策略的优化至少包括投放时间、频道选择、受众选择,以实现精准广告投放。
18.相较于现有技术,本技术具有以下有益效果:1、本发明通过xgboost算法和cnn模型对数据进行处理和学习,能够准确地挖掘和识别用户的行为模式,从而提高广告投放的精准度;将数据划分为训练集、验证集和测试集,可以根据验证集对模型的表现进行调优,找到最优的超参数设置,具有很高的灵活性和可调整性;通过对模型的训练、评估和优化,能够保证模型的可靠性,模型的融合不仅可以提高预测的准确性,还可以增强模型的鲁棒性,使模型在面对不同的数据集时都能保持较高的性能;xgboost和cnn两种模型分别在处理结构化数据和非结构化数据上具有优势,二者的结合可以更有效地处理复杂的数据,提高处理效率。
19.2、本发明通过对广告播放状况的深入分析、广告质量的监控以及关键数据指标的设定,可以帮助广告主更有针对性地优化广告的设计和投放策略,进而提高广告的效果,通过对用户行为和反馈的深入分析,可以更好地了解用户对广告的接受度和需求,从而优化广告内容,提高用户体验,通过分析影响广告效果的因素,可以识别并优化影响广告效果的最大因素,从而提高广告的投放效率,通过深度学习技术对广告的图片和视频进行分析,检测广告内容中的缺陷,并对缺陷进行识别和处理,从而提高广告的质量,设定的关键数据指标可以为广告运营提供数据支持,使得广告运营更加科学、精准。
20.3、本发明通过实时采集、分析数据,并设置预警机制,能够实时发现并解决问题,优化广告投放效果,通过用户行为偏好分析,问题定位和策略优化,可以精准针对目标用户,提升广告的针对性和有效性,数据可视化模块能让运营人员直观地看到广告运营的状况,以便做出及时和有效的策略调整,用户需求分析、市场环境研究、问题识别等环节,帮助广告主全面理解市场和用户,从而制定出更有效的广告策略。
附图说明
21.结合实施例的以下描述,本发明的上述特性、特征和优点及其实现方式和方法变得更明白易懂,实施例结合附图详细阐述。在此以示意图示出:图1是根据本发明实施例的一种用于广告投放的实时监控系统的原理框图。
22.图中:1、数据采集模块;2、用户画像建立与行为分析模块;3、数据处理与行为模式发现模块;4、广告播放状况分析模块;5、广告质量监控模块;6、关键数据指标设定模块;7、数据可视化与预警机制模块;8、广告投放策略优化模块。
具体实施方式
23.为了使本技术领域的人员更好地理解本技术方案,下面将结合本技术实施例中的附图,对本技术实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本技术一部分实施例,而不是全部的实施例。基于本技术中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本技术保护的范围。
24.根据本发明的实施例,提供了一种用于广告投放的实时监控系统以及监控方法。
25.现结合附图和具体实施方式对本发明进一步说明,如图1所示,根据本发明的一个实施例,提供了一种用于广告投放的实时监控系统,该实时监控系统包括:数据采集模块1、用户画像建立与行为分析模块2、数据处理与行为模式发现模块3、广告播放状况分析模块4、广告质量监控模块5、关键数据指标设定模块6、数据可视化与预警机制模块7及广告投放策略优化模块8;所述数据采集模块1,用于实时采集广告的各项数据和用户的行为数据,所述各项数据包括展示频次、点击数、下载量、使用时长和频率。
26.需要解释说明的是,数据采集包括获取广告的各项数据和用户行为数据。广告的各项数据包括展示频次、点击数、下载量、使用时长和频率等。这些数据可以帮助理解广告的表现和用户的反应;在当前的大数据环境下,实时性成为数据采集的一个重要特性。实时采集可以帮助快速捕捉到广告表现和用户行为的变化,从而及时调整优化策略;数据采集之后,还需要通过数据处理和分析以获取有价值的信息。例如,可以通过分析用户行为数据来了解用户的兴趣和偏好,以便更精准地投放广告。在数据采集过程中,需要遵守相关的数据隐私和安全规定。一般需要对用户数据进行去标识化处理,以保护用户的隐私。同时,也需要对数据存储和传输进行安全保护,防止数据泄露。
27.所述用户画像建立与行为分析模块2,用于获取用户的行为数据并建立用户画像,进行不同用户群的行为偏好分析。
28.优选地,所述用户画像建立与行为分析模块2包括:用户的行为数据获取模块、用户画像创建模块、用户分群模块及行为偏好分析模块;所述用户的行为数据获取模块,用于获取用户的行为数据,所述用户的行为数据至少包括用户在网站或应用上的浏览历史、搜索历史、点击历史和购买历史;所述用户画像创建模块,用于获取用户的行为特征,并根据用户的行为特征创建用户画像,所述用户的行为特征至少包括兴趣爱好、购买习惯、搜索习惯;所述用户分群模块,用于根据用户画像,按照年龄、性别和兴趣将用户划分成不同的群体;所述行为偏好分析模块,用于基于用户的行为数据和用户画像,对不同的群体的行为偏好进行分析。
29.需要解释说明的是,用户画像,也称为客户画像,是通过数据分析的方式对用户的基本属性、行为习惯、兴趣爱好等多维度信息进行标签化处理,以创建出对用户的深度描述。在这个模块中,根据用户行为特征,如兴趣爱好、购买习惯、搜索习惯等,制作出用户画像,从而更深层次地理解用户;用户分群是针对大量用户,按照某些特征,如年龄、性别、兴趣等,将其分类为不同的群体。这样做的目的是为了更准确地理解不同群体的需求和偏好,实现精准定向的广告投放;根据用户的行为数据和用户画像,对不同群体的行为偏好进行分析。例如,分析不同用户群体的购买习惯、活跃时间段、最喜欢的产品类型等,这对制定更有效的广告策略具有重要价值。
30.所述数据处理与行为模式发现模块3,用于利用xgboost算法和cnn模型处理用户画像和行为偏好分析的结果,获取用户的行为模式。
31.此外,用户的行为模式包括:用户的兴趣爱好和浏览偏好,比如用户更喜欢浏览什
么类型的商品和内容等。这可以通过xgboost算法对用户的历史浏览和购买数据进行分析获得;用户的互动方式和使用习惯,比如用户更喜欢在什么时间段使用该服务,用户更喜欢通过什么方式(文字、语音等)与机器人互动等。这可以通过cnn模型对用户的历史会话数据和交互记录进行分析获得;用户在某一方面表现出的稳定的响应方式和选择倾向,这反映了用户在这一方面存在的固有思维模式或习惯。这同样可以通过xgboost算法和cnn模型对用户的数据进行分析获得。
32.行为模式分析的目标是通过分析用户的历史行为和数据,挖掘出用户的兴趣、习惯和思维模式,为后续的个性化推荐和服务提供依据。行为模式的分析可以让机器人更好地理解用户,并为用户提供更加个性化和符合其兴趣的体验。
33.优选地,所述数据处理与行为模式发现模块3包括:数据整合模块、数据划分模块、xgboost模型训练模块、cnn模型训练模块、模型融合与优化模块及模型评估与行为识别模块;所述数据整合模块,用于对广告的各项数据、用户的行为数据以及行为偏好的分析结果进行整合,生成用户的特征数据和标签数据,所述特征数据至少包括用户的属性特征、兴趣特征和行为特征;所述数据划分模块,用于将特征数据和标签数据划分为训练集、验证集和测试集;所述xgboost模型训练模块,用于建立xgboost模型,并对训练集的特征数据和标签数据进行xgboost模型训练;所述cnn模型训练模块,用于建立cnn模型,并对训练集的特征数据进行cnn模型训练;所述模型融合与优化模块,用于使用验证集对xgboost模型和cnn模型进行单独评估,找到各自的最优超参数,并融合得到用户行为优化预测模型;所述模型评估与行为识别模块,用于利用测试集对用户行为优化预测模型的泛化能力和效果进行评估,并根据用户行为优化预测模型的评估结果,识别用户的行为模式。
34.优选地,所述模型融合与优化模块包括:xgboost模型调优模块、cnn模型调优模块、融合模块及用户行为优化预测模型评估模块;所述xgboost模型调优模块,用于使用验证集对xgboost模型进行评估,调整xgboost模型的超参数,所述xgboost模型的超参数至少包括:树的深度和学习率,找到xgboost模型的最优超参数组合;所述cnn模型调优模块,用于使用验证集对cnn模型进行评估,调整cnn模型的超参数,所述cnn模型的超参数至少包括:卷积核数量、卷积核大小和池化核大小,找到cnn模型的最优超参数组合;所述融合模块,用于利用xgboost模型的最优超参数组合和cnn模型的最优超参数组合对xgboost模型和cnn模型进行预测,同时利用加权平均法,设定xgboost模型和cnn模型的权重,并根据权重将xgboost模型和cnn模型的预测结果进行融合,得到用户行为优化预测模型;需要解释说明的是,在使用前,通过不断调整xgboost模型和cnn模型在融合中的权重,找到可以取得最佳性能的权重组合。不同的权重会产生不同的模型性能,需要对不同权重下的模型进行评估,找到最优权重;
针对不同的权重会产生不同的模型性能,需要对不同权重下的模型进行评估,找到最优权重的补充的具体实例如下:步骤一、首先设定xgboost模型和cnn模型在融合中的初始权重,如0.5和0.5,利用这组权重对两个模型进行融合,得到第1个融合模型;步骤二、然后调整xgboost模型和cnn模型的权重,如0.6和0.4,利用新权重对两个模型进行融合,得到第2个融合模型;步骤三、对第1个和第2个融合模型在验证集和测试集上的性能进行评估,包括准确率、召回率、f1值等指标,比较两个模型的表现,选择性能较优的那个模型;步骤四、继续调整xgboost模型和cnn模型的权重,产生新的融合模型,并与之前选择的最优模型进行比较,选择最新的最优模型;步骤五、重复步骤四的内容,直到最优模型性能不再提升,找到最终的最优权重;步骤六、使用最终确定的最优权重,对xgboost模型和cnn模型进行融合,得到最优融合模型。
35.所述用户行为优化预测模型评估模块,用于使用测试集对用户行为优化预测模型进行评估,验证用户行为优化预测模型的泛化能力和效果。
36.需要解释说明的是,xgboost模型和cnn模型的调优过程是通过在验证集上评估模型表现,不断调整模型超参数,寻找到最优的超参数设置。而模型的融合是利用加权平均法,根据设定权重将xgboost模型和cnn模型的预测结果进行融合,以提高模型的预测准确性。所述广告播放状况分析模块4,用于根据用户的行为模式,分析视频广告的播放情况、广告的接收情况和效果,同时考虑广告的形式和播放的频道。
37.优选地,所述广告播放状况分析模块4包括:广告播放的数据收集模块、描述性统计模块、用户反馈分析模块、用户行为分析模块、影响因素分析模块及广告投放策略模型构建模块;所述广告播放的数据收集模块,用于根据用户的行为模式,收集各项有关广告播放的数据,所述广告播放的数据至少包括广告的播放次数、播放时长、播放频道、广告形式、用户对广告的反馈和用户的浏览行为;所述描述性统计模块,用于对广告播放次数、播放时长进行描述性统计分析;所述用户反馈分析模块,用于对用户对广告的反馈进行深入分析,所述深入分析包括用户点击广告的频率、给广告点赞的次数和用户对广告的评论内容;所述用户行为分析模块,用于解析用户的浏览行为,所述浏览行为至少包括用户在广告播放页面的停留时间和用户是否选择跳过广告;所述影响因素分析模块,用于分析广告形式、播放频道对广告效果的影响,识别对广告效果影响最大的因素;所述广告投放策略模型构建模块,用于根据描述性统计分析、用户对广告的反馈、用户的浏览行为及播放频道对广告效果的影响的分析,使用决策树算法构建广告投放策略模型。
38.需要解释说明的是,通过广告播放状况分析模块,可以帮助广告主或平台更好地了解广告的播放情况,用户对广告的接受度,以及影响广告效果的因素,从而有针对性地优化广告的设计和投放策略,提高广告的效果。
39.所述广告质量监控模块5,用于应用深度学习技术对广告的图片和视频进行分析,检测广告内容中的缺陷,并对缺陷进行识别和处理。
40.在广告质量监控中,可以利用深度学习进行图像处理,同样,深度学习也可以应用于视频处理,一旦发现广告中的缺陷,可以进一步使用深度学习进行缺陷识别和处理。例如,可以利用深度学习进行异常检测,发现并标注出广告中的缺陷部分;也可以通过深度学习进行缺陷修复。
41.所述关键数据指标设定模块6,用于根据广告的形式和播放的频道,设定广告运营关键数据指标。
42.优选地,所述广告运营关键数据指标包括:广告被展示的次数、广告被点击的次数占展示次数的比例、广告引导用户下载某app次数、用户使用某app的时长、用户使用某app的频率、广告被点击的绝对次数、广告被点击后实际进行了下载app或购买商品的用户占点击用户的比例、用户实际使用某app的情况、用户观看视频广告至结束的比例、用户对广告的反馈和用户在广告页面的行为。
43.需要解释说明的是,广告被展示的次数:这是一个基础的广告数据指标,用于衡量广告的曝光量。曝光量的大小直接影响到广告能否被用户看到,因此是衡量广告运营效果的重要数据指标。
44.点击率:即广告被点击的次数占展示次数的比例,是衡量广告吸引力的重要指标。高的点击率通常意味着广告设计具有较强的吸引力。
45.转化率:即广告被点击后实际进行了下载app或购买商品的用户占点击用户的比例,是衡量广告效果的重要指标。高的转化率意味着广告的目标明确,且能有效地引导用户进行预期的行为。
46.用户反馈和行为:用户对广告的反馈,如点赞、评论等,以及用户在广告页面的行为,如停留时间、是否跳过广告等,都是反映用户对广告接受度的重要数据。
47.所述数据可视化与预警机制模块7,用于根据关键数据指标,提供可视化的运营状况展示界面,并建立预警机制。
48.优选地,所述数据可视化与预警机制模块7包括:设定指标模块、设定指标数据采集模块、设定指标阈值设定模块、数据可视化模块、预警机制模块及优化与改进模块;所述设定指标模块,用于从广告运营关键数据指标中选择设定指标,所述设定指标需能全面反映广告的运营情况;所述设定指标数据采集模块,用于实时采集被监控广告的设定指标的数据;所述设定指标阈值设定模块,用于针对每个设定指标,设定正常范围的阈值;所述数据可视化模块,用于将采集到的指标数据通过图表进行可视化,以便运营人员能够直观地看到广告运营的状况;所述预警机制模块,用于当某个设定指标超出阈值范围时,立即触发预警,实时发送预警信息给相关人员;所述优化与改进模块,用于当出现预警时,分析导致数据超出阈值的原因,提出并实施相应的改进措施。
49.需要解释说明的是,设定指标模块中是从广告运营关键数据指标中选择最能反映广告运营状况的指标。
50.数据采集模块:实时的数据采集是数据分析的基础,一个有效的数据采集模块需要能够实时捕获和存储广告的运行数据,以便后续的分析;阈值是数据预警的基础,通过设定合理的阈值,可以及时发现数据的异常情况。
51.预警机制是及时发现问题、防患于未然的重要手段。当某个指标超出阈值范围时,预警机制模块会立即触发预警,通知相关人员。
52.所述广告投放策略优化模块8,用于根据行为偏好分析的结果和预警机制的通知,进行广告投放策略的优化,所述策略的优化至少包括投放时间、频道选择、受众选择,以实现精准广告投放。
53.优选地,所述广告投放策略优化模块8包括:用户行为偏好分析模块、问题定位与策略优化模块、策略实施模块及效果跟踪模块;所述用户行为偏好分析模块,用于对用户行为进行持续监测,不断收集用户行为数据,识别用户的最新偏好和习惯;所述问题定位与策略优化模块,用于根据用户行为数据和预警机制的通知,定位当前广告投放策略中的问题,并基于当前广告投放策略中的问题,优化广告投放策略;所述策略实施模块,用于将优化后的广告投放策略实施到实际运营中;所述效果跟踪模块,用于跟踪新的广告投放策略的效果,通过分析设定指标来评估广告效果是否达到预期;若未达到预期,则再次进行策略优化。
54.优选地,所述问题定位与策略优化模块包括:用户需求分析模块、市场环境研究模块、问题识别模块、策略优化设计模块及策略效果验证模块;所述用户需求分析模块,用于追踪用户行为数据,比较历史和当前数据,揭示用户的偏好趋势,得到用户需求的演变;所述市场环境研究模块,用于关注市场环境,所述市场环境至少包括竞品策略和行业发展趋势,并规避潜在风险;所述问题识别模块,用于基于用户行为数据和市场环境的分析,确定广告策略存在的问题;所述策略优化设计模块,用于从广告形式、内容、投放时间、频道和目标受众的方面思考和制定针对性的优化策略;所述策略效果验证模块,用于采用专家评审或用户调研的方式,预检新策略的效果,如未达预期,则调整优化策略。
55.需要解释说明的是,根据用户行为数据和预警机制的通知,可以定位当前广告投放策略中的问题,并根据这些问题对策略进行优化。问题可能包括广告形式、内容、投放时间、频道和目标受众。实施优化后的广告投放策略,包括调整广告形式、内容、投放时间、频道和目标受众。通过跟踪新的广告投放策略的效果,可以评估广告效果是否达到预期。如果效果不佳,可以再次进行策略优化。
56.根据本发明的另一个实施例,还提供了一种用于广告投放的实时监控方法,所述实时监控方法包括以下步骤:s1、实时采集广告的各项数据和用户的行为数据,所述各项数据包括展示频次、点击数、下载量、使用时长和频率;s2、获取用户的行为数据并建立用户画像,进行不同用户群的行为偏好分析;
s3、利用xgboost算法和cnn模型处理用户画像和行为偏好分析的结果,获取用户的行为模式;s4、根据用户的行为模式,分析视频广告的播放情况、广告的接收情况和效果,同时考虑广告的形式和播放的频道;s5、应用深度学习技术对广告的图片和视频进行分析,检测广告内容中的缺陷,并对缺陷进行识别和处理;s6、根据广告的形式和播放的频道,设定广告运营关键数据指标;s7、根据关键数据指标,提供可视化的运营状况展示界面,并建立预警机制;s8、行为偏好分析的结果和预警机制的通知,进行广告投放策略的优化,所述策略的优化至少包括投放时间、频道选择、受众选择,以实现精准广告投放。
57.具体地,为了便于本领域技术人员更好的理解,本技术相关实施例,现对本技术可能涉及的技术术语或者部分名词进行解释:深度学习:深度学习是机器学习的一个子领域,主要用于处理包含大量数据的复杂模式。它的主要特点是可以自动从原始数据中提取特征进行学习,而无需人工设计特征提取器。
58.综上所述,借助于本发明的上述技术方案,本发明通过xgboost算法和cnn模型对数据进行处理和学习,能够准确地挖掘和识别用户的行为模式,从而提高广告投放的精准度;将数据划分为训练集、验证集和测试集,可以根据验证集对模型的表现进行调优,找到最优的超参数设置,具有很高的灵活性和可调整性;通过对模型的训练、评估和优化,能够保证模型的可靠性,模型的融合不仅可以提高预测的准确性,还可以增强模型的鲁棒性,使模型在面对不同的数据集时都能保持较高的性能;xgboost和cnn两种模型分别在处理结构化数据和非结构化数据上具有优势,二者的结合可以更有效地处理复杂的数据,提高处理效率;本发明通过对广告播放状况的深入分析、广告质量的监控以及关键数据指标的设定,可以帮助广告主更有针对性地优化广告的设计和投放策略,进而提高广告的效果,通过对用户行为和反馈的深入分析,可以更好地了解用户对广告的接受度和需求,从而优化广告内容,提高用户体验,通过分析影响广告效果的因素,可以识别并优化影响广告效果的最大因素,从而提高广告的投放效率,通过深度学习技术对广告的图片和视频进行分析,检测广告内容中的缺陷,并对缺陷进行识别和处理,从而提高广告的质量,设定的关键数据指标可以为广告运营提供数据支持,使得广告运营更加科学、精准;本发明通过实时采集、分析数据,并设置预警机制,能够实时发现并解决问题,优化广告投放效果,通过用户行为偏好分析,问题定位和策略优化,可以精准针对目标用户,提升广告的针对性和有效性,数据可视化模块能让运营人员直观地看到广告运营的状况,以便做出及时和有效的策略调整,用户需求分析、市场环境研究、问题识别等环节,帮助广告主全面理解市场和用户,从而制定出更有效的广告策略。
59.虽然本发明已以较佳实施例揭示如上,然所述实施例仅为了便于说明而举例而已,并非用以限定本发明,本领域的技术人员在不脱离本发明精神和范围的前提下可作若干的更动与润饰,本发明所主张的保护范围应以权利要求书所述为准。
技术特征:
1.一种用于广告投放的实时监控系统,其特征在于,该实时监控系统包括:数据采集模块、用户画像建立与行为分析模块、数据处理与行为模式发现模块、广告播放状况分析模块、广告质量监控模块、关键数据指标设定模块、数据可视化与预警机制模块及广告投放策略优化模块;所述数据采集模块,用于实时采集广告的各项数据和用户的行为数据,所述各项数据包括展示频次、点击数、下载量、使用时长和频率;所述用户画像建立与行为分析模块,用于获取用户的行为数据并建立用户画像,进行不同用户群的行为偏好分析;所述数据处理与行为模式发现模块,用于利用xgboost算法和cnn模型处理用户画像和行为偏好分析的结果,获取用户的行为模式;所述广告播放状况分析模块,用于根据用户的行为模式,分析视频广告的播放情况、广告的接收情况和效果,同时考虑广告的形式和播放的频道;所述广告质量监控模块,用于应用深度学习技术对广告的图片和视频进行分析,检测广告内容中的缺陷,并对缺陷进行识别和处理;所述关键数据指标设定模块,用于根据广告的形式和播放的频道,设定广告运营关键数据指标;所述数据可视化与预警机制模块,用于根据关键数据指标,提供可视化的运营状况展示界面,并建立预警机制;所述广告投放策略优化模块,用于根据行为偏好分析的结果和预警机制的通知,进行广告投放策略的优化,所述策略的优化至少包括投放时间、频道选择、受众选择,以实现精准广告投放。2.根据权利要求1所述的一种用于广告投放的实时监控系统,其特征在于,所述用户画像建立与行为分析模块包括:用户的行为数据获取模块、用户画像创建模块、用户分群模块及行为偏好分析模块;所述用户的行为数据获取模块,用于获取用户的行为数据,所述用户的行为数据至少包括用户在网站或应用上的浏览历史、搜索历史、点击历史和购买历史;所述用户画像创建模块,用于获取用户的行为特征,并根据用户的行为特征创建用户画像,所述用户的行为特征至少包括兴趣爱好、购买习惯、搜索习惯;所述用户分群模块,用于根据用户画像,按照年龄、性别和兴趣将用户划分成不同的群体;所述行为偏好分析模块,用于基于用户的行为数据和用户画像,对不同的群体的行为偏好进行分析。3.根据权利要求1所述的一种用于广告投放的实时监控系统,其特征在于,所述数据处理与行为模式发现模块包括:数据整合模块、数据划分模块、xgboost模型训练模块、cnn模型训练模块、模型融合与优化模块及模型评估与行为识别模块;所述数据整合模块,用于对广告的各项数据、用户的行为数据以及行为偏好的分析结果进行整合,生成用户的特征数据和标签数据,所述特征数据至少包括用户的属性特征、兴趣特征和行为特征;所述数据划分模块,用于将特征数据和标签数据划分为训练集、验证集和测试集;
所述xgboost模型训练模块,用于建立xgboost模型,并对训练集的特征数据和标签数据进行xgboost模型训练;所述cnn模型训练模块,用于建立cnn模型,并对训练集的特征数据进行cnn模型训练;所述模型融合与优化模块,用于使用验证集对xgboost模型和cnn模型进行单独评估,找到各自的最优超参数,并融合得到用户行为优化预测模型;所述模型评估与行为识别模块,用于利用测试集对用户行为优化预测模型的泛化能力和效果进行评估,并根据用户行为优化预测模型的评估结果,识别用户的行为模式。4.根据权利要求3所述的一种用于广告投放的实时监控系统,其特征在于,所述模型融合与优化模块包括:xgboost模型调优模块、cnn模型调优模块、融合模块及用户行为优化预测模型评估模块;所述xgboost模型调优模块,用于使用验证集对xgboost模型进行评估,调整xgboost模型的超参数,所述xgboost模型的超参数至少包括:树的深度和学习率,找到xgboost模型的最优超参数组合;所述cnn模型调优模块,用于使用验证集对cnn模型进行评估,调整cnn模型的超参数,所述cnn模型的超参数至少包括:卷积核数量、卷积核大小和池化核大小,找到cnn模型的最优超参数组合;所述融合模块,用于利用xgboost模型的最优超参数组合和cnn模型的最优超参数组合对xgboost模型和cnn模型进行预测,同时利用加权平均法,设定xgboost模型和cnn模型的权重,并根据权重将xgboost模型和cnn模型的预测结果进行融合,得到用户行为优化预测模型;所述用户行为优化预测模型评估模块,用于使用测试集对用户行为优化预测模型进行评估,验证用户行为优化预测模型的泛化能力和效果。5.根据权利要求1所述的一种用于广告投放的实时监控系统,其特征在于,所述广告播放状况分析模块包括:广告播放的数据收集模块、描述性统计模块、用户反馈分析模块、用户行为分析模块、影响因素分析模块及广告投放策略模型构建模块;所述广告播放的数据收集模块,用于根据用户的行为模式,收集各项有关广告播放的数据,所述广告播放的数据至少包括广告的播放次数、播放时长、播放频道、广告形式、用户对广告的反馈和用户的浏览行为;所述描述性统计模块,用于对广告播放次数、播放时长进行描述性统计分析;所述用户反馈分析模块,用于对用户对广告的反馈进行深入分析,所述深入分析包括用户点击广告的频率、给广告点赞的次数和用户对广告的评论内容;所述用户行为分析模块,用于解析用户的浏览行为,所述浏览行为至少包括用户在广告播放页面的停留时间和用户是否选择跳过广告;所述影响因素分析模块,用于分析广告形式、播放频道对广告效果的影响,识别对广告效果影响最大的因素;所述广告投放策略模型构建模块,用于根据描述性统计分析、用户对广告的反馈、用户的浏览行为及播放频道对广告效果的影响的分析,使用决策树算法构建广告投放策略模型。6.根据权利要求1所述的一种用于广告投放的实时监控系统,其特征在于,所述广告运
营关键数据指标包括:广告被展示的次数、广告被点击的次数占展示次数的比例、广告引导用户下载某app次数、用户使用某app的时长、用户使用某app的频率、广告被点击的绝对次数、广告被点击后实际进行了下载app或购买商品的用户占点击用户的比例、用户实际使用某app的情况、用户观看视频广告至结束的比例、用户对广告的反馈和用户在广告页面的行为。7.根据权利要求6所述的一种用于广告投放的实时监控系统,其特征在于,所述数据可视化与预警机制模块包括:设定指标模块、设定指标数据采集模块、设定指标阈值设定模块、数据可视化模块、预警机制模块及优化与改进模块;所述设定指标模块,用于从广告运营关键数据指标中选择设定指标,所述设定指标需能全面反映广告的运营情况;所述设定指标数据采集模块,用于实时采集被监控广告的设定指标的数据;所述设定指标阈值设定模块,用于针对每个设定指标,设定正常范围的阈值;所述数据可视化模块,用于将采集到的指标数据通过图表进行可视化,以便运营人员能够直观地看到广告运营的状况;所述预警机制模块,用于当某个设定指标超出阈值范围时,立即触发预警,实时发送预警信息给相关人员;所述优化与改进模块,用于当出现预警时,分析导致数据超出阈值的原因,提出并实施相应的改进措施。8.根据权利要求1所述的一种用于广告投放的实时监控系统,其特征在于,所述广告投放策略优化模块包括:用户行为偏好分析模块、问题定位与策略优化模块、策略实施模块及效果跟踪模块;所述用户行为偏好分析模块,用于对用户行为进行持续监测,不断收集用户行为数据,识别用户的最新偏好和习惯;所述问题定位与策略优化模块,用于根据用户行为数据和预警机制的通知,定位当前广告投放策略中的问题,并基于当前广告投放策略中的问题,优化广告投放策略;所述策略实施模块,用于将优化后的广告投放策略实施到实际运营中;所述效果跟踪模块,用于跟踪新的广告投放策略的效果,通过分析设定指标来评估广告效果是否达到预期;若未达到预期,则再次进行策略优化。9.根据权利要求8所述的一种用于广告投放的实时监控系统,其特征在于,所述问题定位与策略优化模块包括:用户需求分析模块、市场环境研究模块、问题识别模块、策略优化设计模块及策略效果验证模块;所述用户需求分析模块,用于追踪用户行为数据,比较历史和当前数据,揭示用户的偏好趋势,得到用户需求的演变;所述市场环境研究模块,用于关注市场环境,所述市场环境至少包括竞品策略和行业发展趋势,并规避潜在风险;所述问题识别模块,用于基于用户行为数据和市场环境的分析,确定广告策略存在的问题;所述策略优化设计模块,用于从广告形式、内容、投放时间、频道和目标受众的方面思考和制定针对性的优化策略;
所述策略效果验证模块,用于采用专家评审或用户调研的方式,预检新策略的效果,如未达预期,则调整优化策略。10.一种用于广告投放的实时监控方法,用于实现权利要求1-9中任一项所述用于广告投放的实时监控系统的监控,其特征在于,所述实时监控方法包括以下步骤:s1、实时采集广告的各项数据和用户的行为数据,所述各项数据包括展示频次、点击数、下载量、使用时长和频率;s2、获取用户的行为数据并建立用户画像,进行不同用户群的行为偏好分析;s3、利用xgboost算法和cnn模型处理用户画像和行为偏好分析的结果,获取用户的行为模式;s4、根据用户的行为模式,分析视频广告的播放情况、广告的接收情况和效果,同时考虑广告的形式和播放的频道;s5、应用深度学习技术对广告的图片和视频进行分析,检测广告内容中的缺陷,并对缺陷进行识别和处理;s6、根据广告的形式和播放的频道,设定广告运营关键数据指标;s7、根据关键数据指标,提供可视化的运营状况展示界面,并建立预警机制;s8、行为偏好分析的结果和预警机制的通知,进行广告投放策略的优化,所述策略的优化至少包括投放时间、频道选择、受众选择,以实现精准广告投放。
技术总结
本发明公开了一种用于广告投放的实时监控系统以及监控方法,用于广告播放监控领域,该实时监控系统包括:数据采集模块、用户画像建立与行为分析模块、数据处理与行为模式发现模块、广告播放状况分析模块、广告质量监控模块、关键数据指标设定模块、数据可视化与预警机制模块及广告投放策略优化模块。本发明通过XGBoost算法和CNN模型对数据进行处理和学习,能够准确地挖掘和识别用户的行为模式,从而提高广告投放的精准度,通过对广告播放状况的深入分析、广告质量的监控以及关键数据指标的设定,可以帮助广告主更有针对性地优化广告的设计和投放策略。计和投放策略。计和投放策略。
技术研发人员:李峰 崔驰舟
受保护的技术使用者:成都一心航科技有限公司
技术研发日:2023.08.28
技术公布日:2023/9/23
版权声明
本文仅代表作者观点,不代表航家之家立场。
本文系作者授权航家号发表,未经原创作者书面授权,任何单位或个人不得引用、复制、转载、摘编、链接或以其他任何方式复制发表。任何单位或个人在获得书面授权使用航空之家内容时,须注明作者及来源 “航空之家”。如非法使用航空之家的部分或全部内容的,航空之家将依法追究其法律责任。(航空之家官方QQ:2926969996)
航空之家 https://www.aerohome.com.cn/
航空商城 https://mall.aerohome.com.cn/
航空资讯 https://news.aerohome.com.cn/