一种基于种子点连接的脑功能网络构建方法及系统

未命名 09-24 阅读:85 评论:0


1.本发明涉及计算机和医学领域,特别是涉及一种基于种子点连接的脑功能网络构建方法及系统。


背景技术:

2.脑胶质瘤(glioblastoma multiforme,gbm)是脑肿瘤中最常见的、死亡率最高的一种恶性肿瘤。统计表明,脑胶质瘤患者术后存活时间的中位数仅为8个月,而5年以上的存活率几乎为零。因此,通过人工智能与复杂网络等技术手段揭示脑肿瘤患者行为与功能变化的大脑重塑的影像学关联,可建立术前术后患者脑功能改变的预测模型。为了给脑胶质瘤患者治疗后康复及综合治疗提供依据,脑胶质肿瘤患者脑功能重塑预测及验证显得尤为重要。
3.在基于核磁共振的脑肿瘤研究中,通过影像组学和纹理特征建立描述性和预测性模型,将图像特征量化值与疾病分子病理学表型建立联系,能够有效地验证影像学特征结合分类算法预测脑胶质瘤生物标记物的有效性。目前治疗胶质母细胞瘤的主流治疗方法是手术治疗及术后化疗,治疗后随访显示不同的基因表达的患者预后表现出很大差异。因此,2016年版世界卫生组织专家共识细化了中枢神经系统肿瘤脑胶质瘤诊断规范的分类,其中遗传基因学或分子病理学在脑胶质瘤诊断中扮演了重要的角色。特别是mgmt(o6-甲基鸟嘌呤-dna甲基转移酶)基因表达与gbm进展预后以及化疗药物反应关系密切,mgmt启动子甲基化的程度可以评价神经胶质母细胞瘤患者对替莫唑胺的敏感度,成为制定治疗方案选择特异性个体治疗的重要依据,同样还能评估预后并可以作为鉴别术后肿瘤复发与假性进展的重要指标。
4.大量研究表明人脑具有小世界属性,即大脑倾向于与解剖学上相近的脑区通信以减少代谢成本,且较远的脑区之间存在连接以实现高效的信息传输。目前,对脑功能的研究主要从脑图谱入手解析大脑机制,通过绘制大脑的宏观、介观和微观的脑图谱,获得大脑的“结构地图”、“连接地图”和“功能控制地图”等,进而构建脑网络。脑电图是将相关电机放置被检查者头部,通过电子放大器获得脑部功能变化的实时电信号变化。我们将头皮脑电活动的信号放大,数字转换、快速傅立叶变换等电子信号处理,将脑电活动以数量化方式呈现,使之成为更加直观化和客观化的数量化脑电图。目前数字化脑电图已经普遍取代了传统模拟信号的脑电图。由于影像科学技术的日趋成熟,脑电图作为检测脑功能手段之一。脑电图通过可将脑神经组织细胞群自发性、节律性电活动记录下来,通过观察对比相关特征性的表现,可作为临床早期诊断的依据。通过观察器质性脑疾病周围异常的脑电活动,从而反映该区域脑功能。


技术实现要素:

5.本发明的目的是:揭示脑肿瘤患者行为与功能变化的大脑重塑的影像学关联,同时建立术前术后患者脑功能改变的预测模型,为脑胶质瘤患者治疗后康复及综合治疗提供
依据。
6.为了达到上述目的,本发明的一个技术方案是提供了一种基于种子点连接的脑功能网络系统,其特征在于,包括:
7.基于种子点的功能连接模块,用于研究脑胶质瘤患者的脑功能变化,构建患者脑功能网络,进行术前术后的脑功能预测
8.行为与功能变化的大脑重塑的影像学关联模块,用于阐明不同脑肿瘤患者间的行为与mri图像之间的关联,亚区mri影像组学结合分类算法预测脑胶质母细胞瘤mgmt甲基化有效性,分析患者脑功能网络指标与脑胶质瘤等级关系的横向对比;
9.治疗前后脑功能改变的预测模型,用于探究患者脑结构变化与认知功能关系的纵向对比,通过统计物理相关分析方法对脑胶质肿瘤患者术前术后的患者脑功能网络结构进行分析,其在异构网络中表现出的网络自组织和尺度不变性、最大熵原理特性适用于构建诊断患者病情阶段的特征。
10.优选地,所述基于种子点的功能连接模块进一步包括:
11.多模态融合单元,用于获得脑胶质瘤患者的脑融合图;
12.预处理单元,用于使用标准化医学影像处理流程对脑融合图进行数据预处理,以消除大脑的个体性差异;
13.种子点获取单元,对经过预处理单元处理的脑融合图进行分割,得到肿瘤区域的mask,使用分割得到的mask定义种子点;
14.roi区域获取单元,用于通过脑模板基于种子点确定一个脑区或者多个脑区作为roi区域;
15.相关矩阵计算单元,用于提取出roi区域内的平均信号量,计算roi区域之间或者每个roi区域和全脑体素信号的相关系数,从而得到相关矩阵,其中,roi区域对应患者脑功能网络的节点,roi区域之间信号量的相关性对应患者脑功能网络的边;
16.二值化处理单元,用于对相关矩阵进行二值化处理,获得患者脑功能网络的二值矩阵,构建患者脑功能网络。
17.脑功能网络分析单元,使用复杂网络与统计物理对患者脑功能网络进行分析。
18.本发明的另一个技术方案是提供了一种基于种子点连接的脑功能网络构建方法,用于构建上述的基于种子点连接的脑功能网络系统,其特征在于,包括以下步骤:
19.步骤s100、构建所述基于种子点的功能连接模块;
20.步骤s200、构建所述影像学关联模块,包括以下步骤:
21.步骤s201、确定研究对象:收集收治多例脑肿瘤患者,基于排除标准以及纳入标准对其进行筛选,从而获得研究对象,其中:
22.纳入标准包括:初诊为胶质瘤且mri图像质量符合标准的患者;术后病理结果证实胶质母细胞瘤;免疫组化检查结果;
23.排除标准包括:患者罹患其他系统严重疾病;mri图像不符合诊断标准;既往过往颅内手术史患者;病变数≥2;肿瘤最大横径≤5mm;
24.步骤s202、设定扫描参数:ge singna hdxt 3.0tmr检查仪,横轴面t1wi序列增强扫描,对比剂采用gd-dtpa,注射剂量0.1mmol/kg,参数:tr 2600ms,te 13.2ms,fov 260mm,层厚6mm,层数:18;
25.步骤s203、roi绘制:利用开源软件3dslicer绘制pacs系统的tic序列dicom数据,应用半自动阈值法进行绘制,以肿瘤亚区分割肿瘤进行roi绘制,分别涵盖强化区、非强化区、整体区,所有可以显示病灶的层面均进行绘制;
26.步骤s204、特征提取及分析:将原始图及绘制的mask图导入3d slicer软件,提取特征,特征缺失值以0填充;
27.对所提取的特征进行分析时:首先利用t检验删除不具备显著差异的特征,之后用lasso logistic回归筛选权重非零特征,再进行降维筛选;
28.步骤s205、建立预测模型:将上一步所获得的所有数据随机分为训练集及测试集,应用python 3.8语言环境下使用可视化软件easylearn,封装sk learn相关工具包,使用z标准化法对训练集及测试集的数据进行预处理,再使用主成分分析法降维,降维后使用特征排序及递归消除法筛选特征,最后随机过采样处理不平衡数据后,对使用logistic regression、linearsvc、svc、ridge、gaussian、randongmforest、adaboost建立的模型进行训练,使用分层10-fold交叉验证测试,绘制roc曲线,计算各测试集模型auc、准确率、敏感性、特异性,p值;
29.步骤s206、统计学软件:使用spss25.0,二元线性回归计算多因素预测因子,绘制接收者操作特征曲线,计算曲线下面积,检验水准:p<0.05;
30.步骤s300、构建所述治疗前后脑功能改变的预测模型,具体包括以下步骤:
31.s301、基于纳入标准以及排除标准选择符合纳入标准的脑胶质瘤患者,均有术后病理,其中:
32.纳入标准包括:年龄介于18-65岁之间;右利手;术前完整的头颅多模态mr检查,完整的24h脑电图检查;初次发病,均未经各种治疗;术后病理证实为脑胶质瘤并提供who分类;意识清醒,无明确的精神病史或严重精神症状,认知能力正常,既往无颅脑严重外伤、开颅、脑介入治疗、射波刀、伽马刀治疗患者;知情同意并配合检查;
33.排除标准:术前有运动障碍的患者;意识障碍和/或严重心肝肾疾病、肿瘤;既往有中枢神经系统疾病史;存在磁共振检查禁忌或拒绝配合检查的患者;
34.s302、进行脑电图和多模态脑mri检查,满足以下条件:
35.条件一)检查时间:第一次扫描脑胶质瘤患者术前一周内,第二次扫描术后一周,第三次扫描术后描术后1个月;
36.条件二)采用西门子magnetomskyra3.0t磁共振扫描仪,磁共振扫描仪采集图像,图像的采集主要选择16通道头线圈;受检者取仰卧位,头部平放,下颌略收,采用泡沫垫固定头部以利于减少扫描过程中头部运动和图像运动的伪影,采用双外耳道塞入耳塞以最大程度地降低扫描声音的刺激;
37.条件三)扫描序列:多模态脑mri检查,pwi、t1薄层扫描、dti,blod-fmri序列,其中t1薄层扫描扫描:全脑高分辨率t1加权精细结构像,层厚为1mm;静息态bold、任务态blod:对所有患者和志愿者进行检查前训练,使其熟悉对指运动和相关指令的含义;患者根据刺激器显示的指令交替进行左右拇指-四指对指动作,每次动作持续30s,速率1hz,每30s给出指令轮换左右侧,共3min;回波平面成像dti:使用epi序列进行dti数据采集;
38.条件四)同步进行24h脑电图检查;
39.s303、对脑电图和多模态脑mri数据进行后处理初步分析,包括:
40.在r-blod和任务-bold上勾画各脑叶运动功能区兴奋区进行定位和初步分析;
41.pwi和dti各参数的定量和半定量指标,了解肿瘤的灌注情况,观察神经纤维束的走行,并了解脑组织的受压推移、肿瘤侵蚀和破坏情况;
42.t1薄层扫描用于导航、可视化模型和脑皮质厚度测量;
43.经过滤波、变换、对比研究分析后,对脑电图脑电波进行分析;
44.s304、利用多模态数据融合技术将影像数据和脑电数据进行时间域、空间域的融合,建立机器学习等分类模型;将术前资料的特征进行提取、分类,综合分析了解运动相关功能定位、各区域功能链接和结构链接,全脑网络连接情况并建立术前术后患者脑功能改变的预测模型,探讨胶质瘤术后脑神经重塑相关的因素进行分析并对重塑进行预测。
45.本发明基于种子点的功能连接来构建脑胶质瘤患者的脑功能网络,揭示脑肿瘤患者行为与功能变化的大脑重塑的影像学关联,同时建立术前术后患者脑功能改变的预测模型。本发明将大脑抽象为复杂的网络,连接了网络特性与脑功能,可进一步理解大脑的高级认知功能原理,辅助脑胶质肿瘤诊断与脑功能重塑研究。运用复杂网络的科学方法研究脑胶质肿瘤患者脑功能重塑预测及验证,构建基于种子点的脑功能连接,是研究脑胶质瘤患者脑功能变化的新视角,具有鲜明的研究特色。
46.本发明结构设计合理,建立了不同脑胶质瘤患者间的行为和个体治疗前后脑功能与mri图像之间的关联,包括分析脑网络指标与脑胶质瘤等级关系的横向对比和探究患者脑结构变化与认知功能关系的纵向对比,最终构建分析脑功能异常的脑网络特征,为脑胶质瘤患者的认知功能保护提供新的思路。
47.相比于现有技术,本发明至少具有以下优点:
48.(1)基于种子点的功能连接来构建脑胶质瘤患者的脑功能网络,对研究脑胶质瘤患者的脑功能变化,进行术前术后的脑功能预测具有重要科学意义。
49.(2)人类脑计划将大脑抽象为复杂的网络,连接了网络特性与脑功能,可进一步理解大脑的高级认知功能原理,辅助脑胶质肿瘤诊断与脑功能重塑研究。运用复杂网络的科学方法研究脑胶质肿瘤患者脑功能重塑预测及验证,构建基于种子点的脑功能连接,是研究脑胶质瘤患者脑功能变化的新视角,具有鲜明的研究特色。
50.(3)从横向和纵向两个角度分析脑网络结构:分析脑网络指标与脑胶质瘤等级关系的横向对比,构建分析脑功能异常的脑网络特征,为脑胶质瘤患者的认知功能保护提供新的思路;探究患者脑结构变化与认知功能关系的纵向对比,通过统计物理相关分析方法对脑胶质肿瘤患者术前术后的脑网络结构进行分析。
附图说明
51.图1为本发明公开的一种基于种子点连接的脑功能网络构建方法及系统的脑网络构建流程图;
52.图2为本发明公开的一种基于种子点连接的脑功能网络构建方法及系统的脑胶质瘤分区绘制roi图;
53.图3为本发明公开的一种基于种子点连接的脑功能网络构建方法及系统的roc曲线示意图。
具体实施方式
54.下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本技术所附权利要求书所限定的范围。
55.在下列段落中参照附图以举例方式更具体地描述本发明。根据下面说明和权利要求书,本发明的优点和特征将更清楚。需说明的是,附图均采用非常简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本发明实施例的目的。
56.以下列举所述基于复杂网络的脑胶质肿瘤患者脑功能重塑预测方法及系统的较优实施例,以清楚的说明本发明的内容,应当明确的是,本发明的内容并不限制于以下实施例,其他通过本领域普通技术人员的常规技术手段的改进亦在本发明的思想范围之内。
57.本实施例所公开的技术内容具体地包括以下步骤:
58.步骤s100、脑胶质瘤患者基于种子点的功能连接:研究脑胶质瘤患者的脑功能变化,构建患者脑功能网络,进行术前术后的脑功能预测。
59.具体的,确立脑胶质瘤患者基于种子点的功能连接,具体包括如下步骤:
60.步骤s101、确定一个脑区或者多个脑区作为感兴趣区域(roi,region of interest);
61.具体的,基于种子点的脑功能连接计算方法先确定一个脑区或者多个脑区作为roi,提取出roi内的平均信号量,计算roi之间或者每个roi和全脑体素信号的相关系数。其中,roi对应网络的节点,roi之间信号量的相关性对应网络的边。研究证明,使用基于种子分析方法定位运动区的研究结果与实际运动任务和皮层刺激所定义的区域具有高度相似性。这为术前运用静息态功能磁共振定位脑区提供了理论依据;
62.步骤s102、获取roi:
63.具体的,roi的获取有以下三种方法:
64.第一种方法)将其他脑功能或者结构指标的统计差异显著脑区作为roi;
65.第二种方法)基于标准分区模版(例如自动解剖标记图谱)获得roi;
66.第三种方法)手工绘制roi,从影像中获取roi的坐标;
67.步骤s103、患者脑功能网络构建:
68.具体的,如图1所示为脑网络构建流程,包括以下步骤:
69.使用多模态融合技术,获得脑胶质瘤患者的脑融合图;
70.使用标准化医学影像处理流程对脑融合图进行数据预处理,如降噪、空间配准等,以消除大脑的个体性差异;
71.对脑融合图进行分割,得到肿瘤区域的mask;
72.使用分割得到的mask定义种子点,通过脑模板定义感兴趣的脑区,提取信号计算相关性,从而得到相关矩阵;
73.通过对相关矩阵进行二值化处理,获得脑网络的二值矩阵,构建患者脑功能网络;
74.使用复杂网络与统计物理对患者脑功能网络进行分析。
75.步骤s200,脑肿瘤患者行为与功能变化的大脑重塑的影像学关联:阐明不同脑肿瘤患者间的行为与mri图像之间的关联,亚区mri影像组学结合分类算法预测脑胶质母细胞
瘤mgmt甲基化有效性,分析脑网络指标与脑胶质瘤等级关系的横向对比,为脑胶质瘤患者的认知功能保护提供新的思路。
76.具体的,脑肿瘤患者行为与功能变化的大脑重塑的影像学关联,具体包括如下步骤:
77.步骤s201,确定研究对象;
78.具体的,收集收治脑肿瘤患者共1679例,建立严格的排除纳入标准。其中,纳入标准为:1、初诊为胶质瘤且mri图像质量符合标准的患者;2、术后病理结果证实胶质母细胞瘤;3、免疫组化检查结果。
79.排除标准为:1、患者罹患其他系统严重疾病;2、mri图像不符合诊断标准(包括出现运动伪影、增强与平扫定位不一致,序列缺失);3、既往过往颅内手术史患者;4、病变数≥2;5、肿瘤最大横径≤5mm。
80.基于上述排除纳入标准,1679例中的135例脑胶质瘤患者符合标准,40例患者病理包含mgmt启动子甲基化指标,最终被纳入此次研究,其中男性17例,女性23例,年龄:29-80岁;mgmt启动子阳性患者21例,阴性患者19例。
81.步骤s202、确定扫描参数:
82.具体的,ge singna hdxt 3.0tmr检查仪,横轴面t1wi序列增强扫描(t1c),对比剂采用gd-dtpa,注射剂量0.1mmol/kg,参数:tr 2600ms,te 13.2ms,fov 260mm,层厚6mm,层数:18;
83.步骤s203、roi绘制;
84.具体的,利用开源软件3dslicer绘制pacs系统的tic序列dicom数据,应用“半自动阈值法”进行绘制,设定阈值0-1000voxels(体素),单次点击最大填充范围为200pixels(像素),绘制蒙片(mask)。以肿瘤亚区分割肿瘤进行roi绘制,分别涵盖强化区、非强化区、整体区,有争议时请一名高年资中枢神经系统主任医师进行商讨达成一致后决定绘制范围,所有可以显示病灶的层面均进行绘制。
85.如图2所示,图中a表示肿瘤非强化区,b表示肿瘤强化区,c表示肿瘤整体区,d表示感兴趣体积(volume of interactions,voi)。
86.步骤s204、特征提取及分析;
87.具体的,将原始图及绘制的mask图导入3d slicer软件,参照2014年《nature communications》提取包括原始(original)特征(n=112)、高斯-拉普拉斯(laplacian of gaussian log)滤波器图像特征(n=186)、小波特征(wavelet-based)(n=744)在内的共计1037个特征,特征缺失值以“0”填充。首先利用t检验删除不具备显著差异的特征,之后用lasso logistic回归筛选权重非零特征。降维筛选后非强化区、强化区、整体区的特征数分别为107、58、102个,筛选权重非零特征数分别为10、7、10个。
88.步骤s205、建立预测模型;
89.具体的,将所有数据随机按8:2比例分为训练集(trainning set)及测试集(testing set),应用python 3.8语言环境下使用可视化软件easylearn,封装sk learn相关工具包,使用z标准化法(standard scaler)对数据进行预处理,主成分分析法(pca)降维,降维后使用特征排序及递归消除法(feature ranking with recursive feature elimination rfe)筛选特征,随机过采样(random over sample)处理不平衡数据后,使用
logistic regression、linearsvc、svc、ridge、gaussian、randongmforest、adaboost模型进行预测,使用分层10-fold交叉验证测试,绘制roc曲线,计算各测试集模型auc、准确率、敏感性、特异性,p值。
90.步骤s206、统计学软件绘制接收者操作特征曲线(roc);
91.具体的,使用spss25.0,二元线性回归计算多因素预测因子,绘制接收者操作特征曲线(roc),计算曲线下面积(auc),如图3所示。检验水准:p<0.05。
92.步骤s300、治疗前后脑功能改变的预测模型,并进行数据集验证:探究患者脑结构变化与认知功能关系的纵向对比,通过统计物理相关分析方法对脑胶质肿瘤患者术前术后的脑网络结构进行分析,其在异构网络中表现出的网络自组织和尺度不变性、最大熵原理等独特特性适用于构建诊断患者病情阶段的特征。
93.具体的,建立治疗前后脑功能改变的预测模型,具体包括如下步骤:
94.步骤s301、选择符合纳入标准的脑胶质瘤患者,均有术后病理;
95.具体的,纳入标准:a.年龄介于18-65岁之间;右利手;b.术前完整的头颅多模态mr检查,完整的24h脑电图检查;c.初次发病,均未经各种治疗,例如:脱水、化疗、激素、放射等治疗;d.术后病理证实为脑胶质瘤并提供who分类;e.意识清醒,无明确的精神病史或严重精神症状,认知能力正常,既往无颅脑严重外伤、开颅、脑介入治疗、射波刀、伽马刀等治疗患者;f.知情同意并配合检查。
96.排除标准:a.术前有运动障碍的患者;b.意识障碍和(或)严重心肝肾疾病、肿瘤等;c.既往脑卒中、多发性硬化、颅内肿瘤、炎症、颅脑外伤等中枢神经系统疾病史;d.存在磁共振检查禁忌或拒绝配合检查的患者。
97.步骤s302、进行脑电图(eeg)和多模态脑mri检查(pwi、t1薄层扫描、dti,blod-fmri序列),共3次(术前1周内、术后1周及1月)相同的检查;
98.具体的,a.检查时间:第一次扫描脑胶质瘤患者术前一周内,第二次扫描术后一周(7-10天),第三次扫描术后描术后1个月。
99.b.采用西门子magnetomskyra3.0t磁共振扫描仪,磁共振扫描仪采集图像,图像的采集主要选择16通道头线圈。受检者取仰卧位,头部平放,下颌略收,采用泡沫垫固定头部以利于减少扫描过程中头部运动和图像运动的伪影,采用双外耳道塞入耳塞以最大程度地降低扫描声音的刺激。
100.c.扫描序列:多模态脑mri检查(pwi、t1薄层扫描、dti,blod-fmri序列)。其中薄层扫描:全脑高分辨率t1加权精细结构像(层厚;1mm)。静息态bold,任务态blod:对所有患者和志愿者进行检查前训练,使其熟悉对指运动和相关指令的含义。患者根据刺激器显示的指令交替进行左右拇指-四指对指动作,每次动作持续30s,速率约1hz,每30s给出指令轮换左右侧,共3min,回波平面成像(epi)dti:使用epi序列进行dti数据采集。
101.d.同步进行24h脑电图检查。
102.步骤s303、对egg和mri数据进行后处理初步分析;
103.具体的,a.在r-blod和任务-bold上勾画各脑叶运动功能区兴奋区进行定位和初步分析;b.pwi和dti各参数的定量和半定量指标,了解肿瘤的灌注情况,观察神经纤维束的走行,并了解脑组织的受压推移、肿瘤侵蚀和破坏情况;c.t1薄层扫描用于导航、可视化模型和脑皮质厚度测量等;d.经过滤波、变换、对比等研究分析后,对脑电图脑电波进行分析;
104.s304、利用机器学习和复杂网络等多模态数据融合技术将影像数据和脑电数据进行时间域、空间域的融合,建立机器学习等分类模型:
105.具体的,将术前资料的特征进行提取、分类,综合分析了解运动相关功能定位、各区域功能链接和结构链接,全脑网络连接情况并建立术前术后患者脑功能改变的预测模型,探讨胶质瘤术后脑神经重塑相关的因素进行分析并对重塑进行预测。
106.本发明建立了不同脑胶质瘤患者间的行为和个体治疗前后脑功能与mri图像之间的关联,包括分析脑网络指标与脑胶质瘤等级关系的横向对比和探究患者脑结构变化与认知功能关系的纵向对比,最终构建分析脑功能异常的脑网络特征,为脑胶质瘤患者的认知功能保护提供新的思路。

技术特征:
1.一种基于种子点连接的脑功能网络系统,其特征在于,包括:基于种子点的功能连接模块,用于研究脑胶质瘤患者的脑功能变化,构建患者脑功能网络,进行术前术后的脑功能预测行为与功能变化的大脑重塑的影像学关联模块,用于阐明不同脑肿瘤患者间的行为与mri图像之间的关联,亚区mri影像组学结合分类算法预测脑胶质母细胞瘤mgmt甲基化有效性,分析患者脑功能网络指标与脑胶质瘤等级关系的横向对比;治疗前后脑功能改变的预测模型,用于探究患者脑结构变化与认知功能关系的纵向对比,通过统计物理相关分析方法对脑胶质肿瘤患者术前术后的患者脑功能网络结构进行分析,其在异构网络中表现出的网络自组织和尺度不变性、最大熵原理特性适用于构建诊断患者病情阶段的特征。2.如权利要求1所述的一种基于种子点连接的脑功能网络系统,其特征在于,所述基于种子点的功能连接模块进一步包括:多模态融合单元,用于获得脑胶质瘤患者的脑融合图;预处理单元,用于使用标准化医学影像处理流程对脑融合图进行数据预处理,以消除大脑的个体性差异;种子点获取单元,对经过预处理单元处理的脑融合图进行分割,得到肿瘤区域的mask,使用分割得到的mask定义种子点;roi区域获取单元,用于通过脑模板基于种子点确定一个脑区或者多个脑区作为roi区域;相关矩阵计算单元,用于提取出roi区域内的平均信号量,计算roi区域之间或者每个roi区域和全脑体素信号的相关系数,从而得到相关矩阵,其中,roi区域对应患者脑功能网络的节点,roi区域之间信号量的相关性对应患者脑功能网络的边;二值化处理单元,用于对相关矩阵进行二值化处理,获得患者脑功能网络的二值矩阵,构建患者脑功能网络。脑功能网络分析单元,使用复杂网络与统计物理对患者脑功能网络进行分析。3.一种基于种子点连接的脑功能网络构建方法,用于构建如权利要求1所述的基于种子点连接的脑功能网络系统,其特征在于,包括以下步骤:步骤s100、构建所述基于种子点的功能连接模块;步骤s200、构建所述影像学关联模块,包括以下步骤:步骤s201、确定研究对象:收集收治多例脑肿瘤患者,基于排除标准以及纳入标准对其进行筛选,从而获得研究对象,其中:纳入标准包括:初诊为胶质瘤且mri图像质量符合标准的患者;术后病理结果证实胶质母细胞瘤;免疫组化检查结果;排除标准包括:患者罹患其他系统严重疾病;mri图像不符合诊断标准;既往过往颅内手术史患者;病变数≥2;肿瘤最大横径≤5mm;步骤s202、设定扫描参数:ge singna hdxt 3.0tmr检查仪,横轴面t1wi序列增强扫描,对比剂采用gd-dtpa,注射剂量0.1mmol/kg,参数:tr 2600ms,te 13.2ms,fov 260mm,层厚6mm,层数:18;步骤s203、roi绘制:利用开源软件3dslicer绘制pacs系统的tic序列dicom数据,应用
半自动阈值法进行绘制,以肿瘤亚区分割肿瘤进行roi绘制,分别涵盖强化区、非强化区、整体区,所有可以显示病灶的层面均进行绘制;步骤s204、特征提取及分析:将原始图及绘制的mask图导入3d slicer软件,提取特征,特征缺失值以0填充;对所提取的特征进行分析时:首先利用t检验删除不具备显著差异的特征,之后用lasso logistic回归筛选权重非零特征,再进行降维筛选;步骤s205、建立预测模型:将上一步所获得的所有数据随机分为训练集及测试集,应用python 3.8语言环境下使用可视化软件easylearn,封装sk learn相关工具包,使用z标准化法对训练集及测试集的数据进行预处理,再使用主成分分析法降维,降维后使用特征排序及递归消除法筛选特征,最后随机过采样处理不平衡数据后,对使用logistic regression、linearsvc、svc、ridge、gaussian、randongmforest、adaboost建立的模型进行训练,使用分层10-fold交叉验证测试,绘制roc曲线,计算各测试集模型auc、准确率、敏感性、特异性,p值;步骤s206、统计学软件:使用spss25.0,二元线性回归计算多因素预测因子,绘制接收者操作特征曲线,计算曲线下面积,检验水准:p<0.05;步骤s300、构建所述治疗前后脑功能改变的预测模型,具体包括以下步骤:s301、基于纳入标准以及排除标准选择符合纳入标准的脑胶质瘤患者,均有术后病理,其中:纳入标准包括:年龄介于18-65岁之间;右利手;术前完整的头颅多模态mr检查,完整的24h脑电图检查;初次发病,均未经各种治疗;术后病理证实为脑胶质瘤并提供who分类;意识清醒,无明确的精神病史或严重精神症状,认知能力正常,既往无颅脑严重外伤、开颅、脑介入治疗、射波刀、伽马刀治疗患者;知情同意并配合检查;排除标准:术前有运动障碍的患者;意识障碍和/或严重心肝肾疾病、肿瘤;既往有中枢神经系统疾病史;存在磁共振检查禁忌或拒绝配合检查的患者;s302、进行脑电图和多模态脑mri检查,满足以下条件:条件一)检查时间:第一次扫描脑胶质瘤患者术前一周内,第二次扫描术后一周,第三次扫描术后描术后1个月;条件二)采用西门子magnetomskyra3.0t磁共振扫描仪,磁共振扫描仪采集图像,图像的采集主要选择16通道头线圈;受检者取仰卧位,头部平放,下颌略收,采用泡沫垫固定头部以利于减少扫描过程中头部运动和图像运动的伪影,采用双外耳道塞入耳塞以最大程度地降低扫描声音的刺激;条件三)扫描序列:多模态脑mri检查,pwi、t1薄层扫描、dti,blod-fmri序列,其中t1薄层扫描扫描:全脑高分辨率t1加权精细结构像,层厚为1mm;静息态bold、任务态blod:对所有患者和志愿者进行检查前训练,使其熟悉对指运动和相关指令的含义;患者根据刺激器显示的指令交替进行左右拇指-四指对指动作,每次动作持续30s,速率1hz,每30s给出指令轮换左右侧,共3min;回波平面成像dti:使用epi序列进行dti数据采集;条件四)同步进行24h脑电图检查;s303、对脑电图和多模态脑mri数据进行后处理初步分析,包括:在r-blod和任务-bold上勾画各脑叶运动功能区兴奋区进行定位和初步分析;
pwi和dti各参数的定量和半定量指标,了解肿瘤的灌注情况,观察神经纤维束的走行,并了解脑组织的受压推移、肿瘤侵蚀和破坏情况;t1薄层扫描用于导航、可视化模型和脑皮质厚度测量;经过滤波、变换、对比研究分析后,对脑电图脑电波进行分析;s304、利用多模态数据融合技术将影像数据和脑电数据进行时间域、空间域的融合,建立机器学习等分类模型;将术前资料的特征进行提取、分类,综合分析了解运动相关功能定位、各区域功能链接和结构链接,全脑网络连接情况并建立术前术后患者脑功能改变的预测模型,探讨胶质瘤术后脑神经重塑相关的因素进行分析并对重塑进行预测。

技术总结
本发明揭示了一种基于种子点连接的脑功能网络构建方法及系统,将大脑抽象为复杂的网络,连接了网络特性与脑功能,运用复杂网络的科学方法,分析脑网络指标与脑胶质瘤等级关系的横向对比,患者脑结构变化与认知功能关系的纵向对比,通过统计物理相关分析方法对脑胶质肿瘤患者术前术后的脑网络结构进行分析。本发明提供的基于种子点连接的脑功能网络构建方法及系统,对研究脑胶质瘤患者的脑功能变化,进行术前术后的脑功能预测,辅助脑胶质肿瘤诊断与脑功能重塑研究具有重要科学意义。断与脑功能重塑研究具有重要科学意义。断与脑功能重塑研究具有重要科学意义。


技术研发人员:武星
受保护的技术使用者:上海大学
技术研发日:2022.11.12
技术公布日:2023/9/23
版权声明

本文仅代表作者观点,不代表航家之家立场。
本文系作者授权航家号发表,未经原创作者书面授权,任何单位或个人不得引用、复制、转载、摘编、链接或以其他任何方式复制发表。任何单位或个人在获得书面授权使用航空之家内容时,须注明作者及来源 “航空之家”。如非法使用航空之家的部分或全部内容的,航空之家将依法追究其法律责任。(航空之家官方QQ:2926969996)

航空之家 https://www.aerohome.com.cn/

航空商城 https://mall.aerohome.com.cn/

航空资讯 https://news.aerohome.com.cn/

分享:

扫一扫在手机阅读、分享本文

评论

相关推荐