耐氢脆性优异的热成型用镀覆钢板、热成型部件以及它们的制造方法与流程

未命名 09-24 阅读:46 评论:0


1.本发明涉及一种用作汽车车身部件等的热成型(热压成型(hot press forming,hpf))用镀覆钢板、热成型部件以及它们的制造方法。


背景技术:

2.近年来,热成型部件广泛应用于汽车等的结构部件,目的在于通过汽车轻量化来提高燃油效率并保护乘客等,特别地,大量用于很需要超高强度或能量吸收能的保险杠、车门或柱加强件等。特别地,当利用热成型部件时,大量使用表面镀覆的镀覆钢板以确保耐蚀性等。
3.作为涉及这种热成型技术的代表性的技术有专利文献1。专利文献1中在将al-si镀覆钢板加热至850℃以上后将通过冲压引起的热成型和快速冷却的部件的组织形成为马氏体,从而可以确保超高强度。当利用这种热成型技术来确保超高强度时,在高温下成型,因此容易成型复杂的形状。此外,通过模具中的根据快速冷却的强度的提高,可以期待高强度化和轻量化效果。
4.但是,已知所述马氏体组织的抗氢脆性低。特别地,热成型后制造的部件在加热后存在快速冷却引起的残留应力,并且当钢中的扩散性氢量增加时,可能会由于氢脆性而发生延迟破坏,因此具有部件应用受到限制的缺点。因此,需要用于解决这种问题的方法。
5.专利文献1:美国授权专利第6296805号


技术实现要素:

6.要解决的技术问题
7.本发明的一个方面涉及一种热成型用镀覆钢板、利用该热成型用镀覆钢板制造的热成型部件以及它们的制造方法,所述热成型用镀覆钢板可以减少所述热成型部件的氢脆性引起的延迟破坏的发生,因此具有优异的耐氢脆性。
8.本发明的技术问题并不限于上述内容。本发明所属技术领域的技术人员基于本发明的说明书全文可以容易地理解本发明的附加技术问题。
9.技术方案
10.本发明的一个实施方案涉及一种耐氢脆性优异的热成型用镀覆钢板,其包括:基础钢板;以及al基镀层,其形成在所述基础钢板的表面上,其中,所述al基镀层中的ni的平均含量为0.05-0.35重量%。
11.本发明的另一个实施方案涉及一种制造耐氢脆性优异的热成型用镀覆钢板的方法,其包括以下步骤:准备基础钢板;将准备的所述基础钢板以150-2500mg/m2的镀覆附着量进行ni镀覆;以及将ni镀覆的所述冷轧钢板进行连续退火并进行al基镀覆。
12.本发明的另一个实施方案涉及一种耐氢脆性优异的热成型部件,其包括:基材铁;以及合金镀层,其形成在所述基材铁上,其中,从所述合金镀层的表面到沿深度方向的15μm
的ni含量最高点(ni
最大(max)
)处的ni含量为0.1-0.75重量%。
13.本发明的另一个实施方案涉及一种制造耐氢脆性优异的热成型部件的方法,其包括以下步骤:提供坯件,所述坯件包括基础钢板和形成在所述基础钢板的表面的al基镀层,所述al基镀层中的ni的平均含量为0.05-0.35重量%;将所述坯件加热至ac3至975℃的温度范围;以及将加热的所述坯件转移至压力机以进行成型,并以20℃/秒以上的冷却速度进行冷却。
14.有益效果
15.在将本发明的热成型用镀覆钢板进行热成型的情况下,降低钢中的扩散性氢量,从而可以提供一种耐氢脆性优异的热成型部件。
16.本发明的多个有益的优点和效果并不限于上述内容,在对本发明的具体的实施方案进行说明的过程中可以更容易地理解。
附图说明
17.图1是通过辉光放电发光分析法(glow discharge optical emission spectrometry,gds)分析实施例中的发明例1的热成型用镀覆钢板中的al基镀层的fe和ni的含量的曲线图。
18.图2是对实施例中的发明例3的热成型部件的合金镀层中的ni含量进行gds分析的曲线图,由此示出ni富集层。
19.图3是对实施例中的发明例1至发明例3和比较例2的热成型部件的合金镀层中的ni含量进行gds分析的曲线图。
20.图4是示出测量实施例中的发明例1至发明例8、比较例1至比较例2的热成型部件中的ni
最大
点的ni含量和各部件的扩散性氢量的结果的曲线图。
21.最佳实施方式
22.本说明书中使用的术语用于说明本发明,并不意在限定本发明。此外,除非相关定义显示出明显相反的含义,否则本说明书中使用的单数形式还包括复数形式。
23.说明书中使用的“包含”或“包括”的含义用于具体说明构成,并且不排除其它构成的存在或增加。
24.除非另有定义,否则本说明书中使用的技术术语和科学术语在内的所有术语具有与本领域技术人员通常理解的含义相同的含义。词典中定义的术语解释为符合相关技术文献和目前公开的内容的含义。
25.本发明的发明人对热成型部件的氢脆性进行深入研究的结果,热成型时在将具有铝等的镀层的坯件(由热成型用镀覆钢板制造)进行加热的步骤中,热处理炉中存在的水蒸气吸附在坯件的表面上。接着,水被解离的同时产生的氢在高温下吸留在具有高的氢的溶解度的奥氏体相的钢中。
26.但是,发现当通过热成型发生快速冷却而转变为马氏体相时,氢的溶解度迅速降低,镀层被合金化的同时形成的合金镀层起到屏障的作用以使氢难以释放。因此,大量的扩散性氢含量残留在钢中,因此氢延迟断裂引起的裂纹生成的可能性增加。因此,发现重要的是减少热处理时吸留的扩散性氢量。
27.本发明人对影响热成型用钢材中的氢脆性的钢中的扩散性氢量进行分析时发现
可以通过ni镀覆来减少扩散性氢量的效果,从而完成了本发明。
28.以下,对本发明进行详细的说明。
29.本发明的一个实施方案的热成型用镀覆钢板包括基础钢板和形成在所述基础钢板上的al基镀层,所述al基镀层中的ni含量优选为0.05重量%以上。
30.除了所述ni之外,所述al基镀层只要是广泛用于本发明所属的热成型用镀覆钢板的技术领域中通过技术人员进行的热成型用镀覆钢板的al基镀覆即可,所述al基镀层的成分的含量或种类没有特别限制。例如,不仅可以包括纯al镀覆,还可以全部包括al中包含一部分si而进行的镀覆等。
31.所述al基镀层可以包括富al层和浓度梯度层。所述浓度梯度层是在对基础钢板进行al基镀覆的过程中通过基础钢板的fe和al镀浴成分相互反应而包含fe而形成的区间。所述al基镀层中不容易明确区分所述富al层和浓度梯度层的边界。但是,所述富al层中的fe含量少于浓度梯度层中的fe含量。作为一个实例,当所述al基镀层中的fe的含量为约2重量%以上时,可以理解与镀覆成分相比,基础钢板中扩散的fe的含量增加,因此可以视为富al层和浓度梯度层的边界,并且所述浓度梯度层和基础钢板的边界可以视为fe含量成为约80重量%的点,但并不由此明确区分。
32.作为一个实例,参考图1,图1是对以下实施例中的发明例1的热成型用镀覆钢板的从表面沿深度方向进行辉光放电发光分析法(gds)的分析结果,由此可以理解为所述al基镀层包括富al层和fe含量直至成为80重量%的浓度梯度层。
33.在所述热成型用镀覆钢板中,所述al基镀层中的ni的平均含量优选为0.05重量%以上。如所述图1所示,所述al基镀层中包含的ni优选沿深度方向分布。但是,参考图1,所述ni的含量从镀覆钢板的表面沿镀层的深度方向不恒定。所述平均含量是指从表面沿al基镀层的深度方向分析的结果的平均。作为测量所述平均含量的优选的一个实例,在如图1所示的gds分析ni曲线中可以获得曲线图的平均值。如下所述,所述al基镀层中包含的ni在热成型过程中形成的合金镀层中实现ni富集层的形成,如此形成的ni富集层起到防止在用于热成型的热处理过程中可被吸留的外部氢渗透到基础钢板的作用。由此,起到可以改善热成型部件的耐氢脆性的作用。
34.当所述ni含量小于0.05重量%时,热成型时无法形成充分的ni富集层,由此难以有效地防止热成型热处理中吸留的外部氢。另一方面,随着所述ni含量增加,防止外部氢的效果增加。但是,当ni含量超过0.35重量%时,由于ni的附着量增加,成本增加,并且宽度方向的不均匀程度也增加,从而难以制造均质的钢板,因此所述ni含量优选不超过0.35重量%。更优选的范围为0.055-0.335重量%。
35.在本发明中,所述基础钢板的种类、合金的成分体系没有特别限制,只要可以用作热成型部件,则其种类没有限制。作为一个优选的实例,在本发明中,以重量%计,所述基础钢板包含:碳(c):0.07-0.5%、硅(si):0.05-1%、锰(mn):0.5-4%、磷(p):0.001-0.015%、硫(s):0.0001-0.02%、铝(al):0.01-0.1%、铬(cr):0.01-1%、氮(n):0.001-0.02%、余量的铁(fe)和不可避免的杂质。此外,可以包含:钛(ti):0.1%以下(包括0)、硼(b):0.01%以下(包括0)。以下,对各合金成分进行简要的说明。
36.碳(c):0.07-0.5重量%(以下,%)
37.所述c是提高热成型部件的强度和淬透性的元素,并且作为调节强度所必须的元
素需要适当地包含。当所述c含量小于0.07%时,淬透性低,冷却速度降低时无法确保充分的马氏体,由于生成铁素体,难以确保期望的强度,因此优选包含0.07%以上的c,当所述c含量超过0.5%时,强度过度增加,引发脆性,并且焊接性降低,因此所述c含量优选不超过0.5%。
38.硅(si):0.05-1%
39.所述si在炼钢中作为脱氧剂添加,而且si是固溶强化元素,抑制碳化物的生成,并且对内部组织均匀化有效。此外,所述si是有助于提高热成型部件的强度,并对材质均匀化有效的元素。但是,当所述si含量小于0.05%时,难以期待上述效果,当所述si含量超过1%时,由于在退火中形成在钢板表面的过量的si氧化物,镀覆性大幅降低,因此所述si含量优选为1%以下。
40.锰(mn):0.5-4%
41.所述mn可以通过固溶强化效果来确保所需强度,而且是为了通过提高淬透性来抑制热成型时铁素体的形成而所需的元素。当所述mn含量小于0.5%时,难以获得充分的淬透性效果,并且为了不足的淬透性,需要过多的其它高价的合金元素,导致制造成本大幅增加的问题。另外,当所述mn含量超过4%时,微细组织中沿着轧制方向排列的带(band)状组织加深,可能会引发内部组织的不均匀性,由此耐碰撞性可能会变差,因此所述mn含量优选为4%以下。
42.磷(p):0.001-0.015%
43.所述p在钢中作为杂质存在,为了使所述p的最低含量小于0.001%,需要许多制造成本,因此不优选,当所述p的最大含量超过0.015%时,由于热成型部件的焊接性和高温晶界偏析而导致材质的物理性能变差,因此所述p含量优选不超过0.015%。
44.硫(s):0.0001-0.02%
45.所述s是一种杂质,并且所述s是阻碍部件的延展性、冲击特性及焊接性的元素,因此优选将所述s的最大含量设为0.02%。此外,为了使所述s的最小含量小于0.0001%,制造成本大幅增加,因此不优选。
46.铝(al):0.01-0.1%
47.所述al是与si一同在炼钢中起到脱氧作用而提高钢的清洁度的元素。当所述al含量小于0.01%时,难以获得这种效果,当所述al含量超过0.1%时,由于连铸工艺中形成的过多的aln析出物,高温延展性降低,导致板坯产生裂纹,可能会引发制造方面的问题,因此所述al含量的上限优选为0.1%。
48.铬(cr):0.01-1%
49.如同mn,所述cr作为通过确保钢的淬透性来抑制热成型后的铁素体的生成的元素而添加。当所述cr含量小于0.01%时,难以确保上述效果。另一方面,当所述cr含量超过1%时,与添加量相比,提高淬透性的效果微乎其微,而且形成过多的粗大的铁碳化物,在应力作用时可能会引发裂纹,导致材质变差,因此所述cr含量优选不超过1%。
50.氮(n):0.001-0.02%
51.所述n作为杂质包含在钢中。为了使所述n含量小于0.001%,伴随过高的制造成本,当所述n含量超过0.02%时,由于与添加的al一起形成aln,容易产生板坯裂纹,因此所述n含量优选不超过0.02%。
52.钛(ti):0.1%以下(包括0)
53.所述ti与钢中作为杂质残留的氮结合形成tin,从而可以保护用于确保淬透性的b不成为化合物。为此,可以进一步包含所述ti。此外,通过形成tic析出物,可以期待析出强化和晶粒微细化效果。但是,当所述ti含量超过0.1%时,反而会形成大量的粗大的tin,导致钢的材质变差,因此所述ti含量的上限优选不超过0.1%。
54.硼(b):0.01%以下(包括0)
55.所述b是可以有效地提高淬透性的元素,通过偏析在原奥氏体晶界而可以抑制作为杂质的p和/或s的晶界偏析引起的热成型部件的脆性,因此可以进一步包含所述b。但是,当所述b含量超过0.01%时,由于fe
23
cb6复合化合物的形成,在热轧过程中可能会引起脆性,因此所述b含量的上限优选为0.01%。
56.余量包含铁(fe)和不可避免的杂质。不可避免的杂质可能会在通常的铁钢制造工艺中不可避免地会混入,因此不能完全排除这些杂质,并且常规的钢铁制造领域的技术人员可以容易理解其含义。此外,在本发明中,不全面排除除了上述钢的组成之外的其它组成的添加。
57.接着,对本发明的另一个实施方案的制造热成型用镀覆钢板的方法进行详细的说明。所说明的制造方法是制造上述热成型用镀覆钢板的优选的一个实例,并不必须由此制造。
58.所述制造方法包括以下步骤:准备基础钢板;将准备的所述基础钢板的表面进行ni镀覆;以及将ni镀覆的所述基础钢板进行连续退火,并进行al基镀覆。
59.所述基础钢板如上所述,准备所述基础钢板的过程可以通过在将满足上述钢组成的钢坯进行加热后,进行热轧、收卷、冷轧来获得。
60.在将满足上述组成的钢坯加热至1050-1300℃后进行热轧。当所述加热温度低于1050℃时,钢坯组织无法充分均质化,因此使用析出元素时难以再固溶,当所述加热温度超过1300℃时,形成过多的氧化层,导致用于去除氧化层的制造成本增加,在热轧后发生表面缺陷的可能性增加。
61.所述热轧的精轧温度优选在800-950℃的温度范围内进行。当所述精轧温度低于800℃时,进行两相区轧制,在钢板的表层部引入铁素体,并且难以控制板形状。另一方面,当所述精轧温度超过950℃时,可能会发生热轧晶粒的粗大化。
62.在热轧之后,在500-700℃的温度范围内进行收卷。当所述收卷温度低于500℃时,由于在钢板的全部或部分形成马氏体,难以控制卷材的形状,而且由于热轧钢板的强度过度增加,存在后续的冷轧性降低的问题。另一方面,当所述收卷温度超过700℃时,形成过多的粗大的碳化物,并且产生热成型部件的应力时促进裂纹的产生,因此耐碰撞性可能会降低。
63.之后,进行冷轧工艺。但是,为了在冷轧之前去除表面氧化物,可以进行酸洗工艺。根据需要,不进行冷轧,并且进行镀覆,从而可以用作热成型用基础钢板。
64.所述冷轧时的冷轧压下率是为了获得预定的厚度而进行,优选以30-80%的压下率进行。
65.在如上所述准备的基础钢板的表面上进行ni镀覆。作为所述ni镀覆的一个实例,可以进行ni闪镀。ni闪镀是在退火之前进行的一种电镀方法,其通过使用ni电解液并调节
电镀之间的电流量等来进行。所述ni镀覆优选在基础钢板的表面上以150-2500mg/m2的附着量进行。
66.通过所述ni镀覆进行的ni镀覆的附着量优先为150-2500mg/m2。当所述ni镀覆的附着量小于150mg/m2时,在用于热成型的热处理中,ni无法富集在镀层中,从而无法充分发挥本发明的效果,当所述ni镀覆的附着量超过2500mg/m2时,由于电镀之间的过度的电流集中,不仅钢板的内部发生局部的未镀覆,而且制造成本过度增加,如过度使用用于涂覆ni的电镀用溶液等,因此所述ni镀覆的附着量优选以2500mg/m2以下进行。另外,更优选的ni镀覆的附着量为200-2000mg/m2。
67.将所述ni镀覆的基础钢板进行连续退火并进行al基镀覆。所述退火时的退火温度优选为740-860℃。当所述退火温度低于740℃时,冷轧的组织的再结晶未充分完成,因此板的形状可能不良,并且镀覆后的强度过高,因此在冲裁工艺中可能会引发模具磨损。另一方面,当所述退火温度超过860℃时,在退火工艺中促进表面氧化物的形成,因此al基镀覆时在镀覆表面上可能会引发缺陷。此外,退火热处理时的气氛优选为非氧化性气氛,并且可以使用氢-氮混合气体等。此时,气氛气体的露点温度(dew point)优选为-75℃至-20℃。为了使所述露点温度低于-75℃,需要用于控制露点温度的附加设备,因此存在制造成本增加的问题,当所述露点温度超过-20℃时,在退火过程中在钢板的表面上形成退火氧化物,因此可能会引发未镀覆等表面质量不良。
68.所述退火后进行al基镀覆。所述al基镀覆是指铝或铝合金镀覆,只要是应用于热成型用镀覆钢板的镀层,则本发明中也可以没有限制地应用。
69.所述al基镀覆优选浸入al基镀浴中来进行,作为优选的一个实例,所述镀浴组成优选包含:硅(si):6-12重量%、铁(fe):1-4重量%、余量的铝(al)和不可避免的杂质。
70.所述al基镀覆时镀覆附着量优选为单面基准20-140g/m2。当单面基准镀覆附着量小于20g/m2时,难以确保期望的热成型部件的耐蚀性。另一方面,当单面基准镀覆附着量超过140g/m2时,过度的镀覆附着量导致制造成本增加,并且难以在卷材的整个宽度和长度方向上将镀层均匀地进行镀覆。
71.接着,对本发明的另一个实施方案的热成型部件进行详细的说明。作为一个优选的实例,所述热成型部件可以通过将上述热成型用镀覆钢板进行热成型来获得。
72.所述热成型部件包括基材铁和形成在所述基材铁上的合金镀层,测量从所述合金镀层的表面到15μm的ni含量的结果,在ni含量的最高点(ni
最大
)处的ni含量优选为0.1重量%以上。作为确认所述ni
最大
的方法的一个实例,可以通过分析由辉光放电发光分析法(gds)的结果获得的曲线图来确认。当所述ni
最大
中的ni含量小于0.1重量%时,无法充分形成ni富集层,无法有效地防止热成型之间的外部氢的吸留,因此难以确保耐氢脆性。随着所述ni
最大
中的ni含量增加,抑制氢的吸留的效果增加,但当ni含量过高时,ni附着量的增加导致成本增加,焊接时可能会发生环境的问题,因此所述ni含量优选不超过0.75重量%。
73.所述合金镀层是在通过热成型的加热过程中所述al基镀层的镀层的成分、基材铁等相互反应而合金化获得的层,在本发明中,所述合金镀层没有特别限制。
74.另一方面,优选在所述合金镀层中包含ni富集层。确认所述ni富集层的方法可以有各种方法。作为一个优选的实例,可以利用在所述合金镀层的表面上沿部件的厚度方向利用辉光放电发光分析法(gds)获得的浓度曲线的图。在所述浓度曲线图中,可以将ni的含
量最高点(ni
最大
)处的沿所述部件的表面方向的曲线的斜率成为0的第一个点(nio)和所述ni
最大
处的与所述部件的沿深度方向的所述nio具有相同的含量的点(nio')之间的宽度规定为所述ni富集层。
75.图2是对以下实施例中的发明例3的热成型部件中的ni含量进行gds分析的浓度曲线图。从所述图2中导出所述ni
最大
、nio、nio',由此可以确认ni富集层。
76.所述ni富集层的厚度没有特别限制,可以根据镀覆、热成型时的热处理条件等而变化。作为一个具体的实例,所述ni富集层的厚度优选为1-15μm。当所述ni富集层的厚度小于1μm时,难以确保充分的耐氢脆性效果,当所述ni富集层的厚度超过15μm时,需要进行过多的ni闪镀,并且可能会引发成本增加和焊接时的环境问题等。
77.所述热成型部件的扩散性氢量优选为0.3重量ppm以下。所述热成型部件的扩散性氢量可以利用热解吸(thermal desorption analysis,tda)装置来测量,作为具体的方法,以20℃/秒的升温速度升温至约400℃,保持时间以使扩散性氢峰(peak)充分出现,从而测量扩散氢曲线(curve),并且所述热成型部件的扩散性氢量是将这种曲线进行积分而获得的值。
78.热成型用镀覆钢板的基础钢板和热成型部件的基材铁的合金组成的差异不大,但在微细组织上可能存在差异,因此优选将其进行区分。因此,在本发明中区分为,在热成型用镀覆钢板中使用基础钢板,在热成型部件中为基材铁。另一方面,在热成型用镀覆钢板的基础钢板的情况下,尽管形成了铁素体和珠光体组织,但经过热成型形成的热成型部件的基材铁中形成马氏体作为主相,并且可以形成一部分贝氏体。
79.以下,对本发明的另一个实施方案的制造热成型部件的方法进行说明。为此,提供一种坯件,所述坯件包括基础钢板和形成在所述基础钢板的表面上的al基镀层,所述al基镀层中的ni的平均含量为0.05-0.35重量%。作为用于提供所述坯件的一个实例,可以通过利用上述热成型用镀覆钢板来制造坯件。
80.优选将提供的所述坯件加热至奥氏体单相区温度以上,更具体地加热至ac3至975℃的温度范围。当所述加热温度低于ac3温度时,由于根据两相区区间的未相变的铁素体的存在,难以确保强度和耐碰撞性。另一方面,当加热温度超过975℃时,在部件表面上生成过多的氧化物,因此难以确保点焊性,并且用于保持高温的制造成本增加。优选将如上所述加热的坯件在上述温度范围内保持1-1000秒。当保持时间小于1秒时,在整个坯件中的均匀的温度分布困难,因此可能会引发每个位置的材质偏差,当保持时间超过1000秒时,由于在表面上生成过多的氧化物而难以确保点焊性,而且可能会引发部件的制造成本的增加。所述ar3可以由下式获得。
81.ar3=902-255c+19si-11mn-5cr[℃]
[0082]
(所述c、si、mn和cr表示各成分的含量)
[0083]
将加热的所述坯件转移至压力机并进行成型和冷却的工艺。此时,冷却速度优选为20℃/秒以上。当所述冷却速度小于20℃/秒时,在冷却过程中引入铁素体相,生成晶界,并且强度、耐碰撞性等物理性能可能会变差。不特别限制所述坯件的转移、成型和冷却的过程,对于热成型工序,可以直接应用通常使用的工序。
具体实施方式
[0084]
以下,对本发明的实施例进行详细的说明。以下实施例仅用于理解本发明,并不用于解释本发明的权利范围。
[0085]
(实施例)
[0086]
首先,将满足下表1的钢组成(单位为重量%)的钢坯以60mm的厚度进行真空熔解来制造。此时,表1中未记载的钢组成的余量为fe和不可避免的杂质。将如此准备的钢坯加热至1200℃并保持1小时后进行热轧,在900℃的热轧终止温度下完成,并在600℃的温度下进行收卷。之后,进行冷轧,以制造厚度为1.5mm的冷轧钢板。
[0087]
对于所述冷轧钢板,通过ni闪镀处理进行ni镀覆。此时,ni镀覆量的附着量示于表1中。所述ni闪镀处理是利用ni电解液的电镀,通过调节电镀之间的电流量来调节所述附着量。
[0088]
将ni闪镀处理的所述冷轧钢板进行退火,使用包含9重量%的si、2重量%的fe、余量的al和不可避免的杂质的al基镀浴,镀覆温度为约660℃,镀覆附着量以单面基准75g/m2进行。所述连续退火在800℃的温度下进行。
[0089]
测量如上所述制造的镀覆钢板的al基镀层中分布的ni的平均含量并示于表2中。测量包括镀层和浓度梯度层(直至al基镀层中fe含量成为80重量%以下的点)的如上所述的al基镀层,并使用gds850a(型号名称,力可(leco)公司的产品)dc和rf装置并使用辉光放电发光分析法(gds)来进行分析。
[0090]
此外,为了检查ni电镀后的镀覆粘附性,目视观察生产的镀覆钢板,测量从钢板剥离的部位的长轴长度,根据以下标准进行评价并示于表2中。
[0091]

:剥离的部位的长轴长度为3mm以下
[0092]
×
:剥离的部位的长轴长度超过3mm
[0093]
利用所述镀覆钢板制造坯件,将所述坯件加热至900℃,并保持6分钟,在10秒以内转移至模具以进行成型和冷却。此时,冷却以20-40℃/秒的冷却速度进行冷却。在如此制造的热成型部件中,对从合金镀层的表面到沿深度方向的15μm的ni含量的最高点(ni
最大
)的ni含量进行所述gds分析,将其结果示于表2中,并测量部件中的扩散性氢量,并同样示于表2中。
[0094]
[表1]
[0095]
[0096][0097]
[表2]
[0098][0099]
另一方面,图1是对所述发明例1的热成型用镀覆钢板的al基镀层中的fe和ni含量进行gds分析的曲线图。此外,图2是对发明例1至发明例3、比较例2的热成型部件中的合金镀层中的ni含量进行gds分析的曲线图。图3是示出所述发明例1至发明例8和比较例1至比较例2的热成型部件中的合金镀层中的ni
最大
含量和扩散性氢量的曲线图。
[0100]
从通过所述实施例获得的所述表2和图1至图4的结果可知,属于本发明的范围的发明例的镀覆钢板具有优异的镀覆粘附性,将所述镀覆钢板进行热成型时,具有优异的耐氢脆性。
[0101]
但是,可知在不在本发明的范围内并且未进行或少量进行ni闪镀的比较例1和比较例2中,热成型后的合金镀层中也无法确保充分的ni,因此难以确保本发明中所需的耐氢脆性。
[0102]
另一方面,可以确认,在ni闪镀镀覆量过多的比较例2和比较例3中,可以确保耐氢脆性,但由于镀覆时的钢板中的燃烧现象,发生未镀覆,镀覆粘附性差。

技术特征:
1.一种耐氢脆性优异的热成型用镀覆钢板,其包括:基础钢板;以及al基镀层,其形成在所述基础钢板的表面上,其中,所述al基镀层中的ni的平均含量为0.05-0.35重量%。2.根据权利要求1所述的耐氢脆性优异的热成型用镀覆钢板,其中,以重量%计,所述基础钢板包含:c:0.07-0.5%、si:0.05-1%、mn:0.5-4%、p:0.001-0.015%、s:0.0001-0.02%、al:0.01-0.1%、cr:0.01-1%、n:0.001-0.02%、ti:0.1%以下、b:0.01%以下、余量的fe和不可避免的杂质。3.根据权利要求1所述的耐氢脆性优异的热成型用镀覆钢板,其中,所述al基镀层包括富al层和浓度梯度层。4.一种制造耐氢脆性优异的热成型用镀覆钢板的方法,其包括以下步骤:准备基础钢板;将准备的所述基础钢板以150-2500mg/m2的镀覆附着量进行ni镀覆;以及将ni镀覆的所述冷轧钢板进行连续退火并进行al基镀覆。5.根据权利要求4所述的制造耐氢脆性优异的热成型用镀覆钢板的方法,其中,准备所述基础钢板的步骤包括以下步骤:准备钢坯,以重量%计,所述钢坯包含:c:0.07-0.5%、si:0.05-1%、mn:0.5-4%、p:0.001-0.015%、s:0.0001-0.02%、al:0.01-0.1%、cr:0.01-1%、n:0.001-0.02%、ti:0.1%以下、b:0.01%以下、余量的fe和不可避免的杂质;将所述钢坯加热至1050-1300℃;在800-950℃的温度范围内,将加热的所述钢坯进行热精轧以制造热轧钢板;在500-700℃的温度范围内,将所述热轧钢板进行收卷;以及所述收卷后进行酸洗并以30-80%的压下率进行冷轧。6.根据权利要求4所述的制造耐氢脆性优异的热成型用镀覆钢板的方法,其中,所述连续退火在740-860℃的温度范围和-75℃至-25℃的露点温度下进行。7.一种耐氢脆性优异的热成型部件,其包括:基材铁;以及合金镀层,其形成在所述基材铁上,其中,从所述合金镀层的表面到沿深度方向的15μm的ni含量最高点即ni
最大
处的ni含量为0.1-0.75重量%。8.根据权利要求7所述的耐氢脆性优异的热成型部件,其中,所述合金镀层包含ni富集层,所述ni富集层是辉光放电发光分析法(gds)获得的所述合金镀层的ni含量的浓度曲线图中的在ni的含量最高点即ni
最大
处的沿所述部件的表面方向的曲线的斜率成为0的点ni
o
和所述ni
最大
处的与所述部件的沿深度方向的所述ni
o
具有相同的含量的点ni
o
'之间的宽度。9.根据权利要求8所述的耐氢脆性优异的热成型部件,其中,所述ni富集层的厚度为1-15μm。10.根据权利要求7所述的耐氢脆性优异的热成型部件,其中,所述热成型部件的扩散性氢量为0.3重量ppm以下。11.根据权利要求7所述的耐氢脆性优异的热成型部件,其中,所述基材铁的主相是马
氏体。12.一种制造耐氢脆性优异的热成型部件的方法,其包括以下步骤:提供坯件,所述坯件包括基础钢板和形成在所述基础钢板的表面上的al基镀层,所述al基镀层中的ni的平均含量为0.05-0.35重量%;将所述坯件加热至ac3至975℃的温度范围;以及将加热的所述坯件转移至压力机以进行成型,并以20℃/秒以上的冷却速度进行冷却。13.根据权利要求12所述的制造耐氢脆性优异的热成型部件的方法,其中,加热的所述坯件在所述温度范围内保持1-1000秒。

技术总结
本发明涉及一种热成型用镀覆钢板及其制造方法,所述热成型用镀覆钢板包括形成在基础钢板的表面的Al基镀层,并使Al基镀层中的Ni的平均含量为0.05-0.35重量%,从而具有优异的耐氢脆性。耐氢脆性。耐氢脆性。


技术研发人员:金相宪 吴振根 金圣祐 李世雄 全孝植 苏璱起
受保护的技术使用者:浦项股份有限公司
技术研发日:2022.05.13
技术公布日:2023/9/22
版权声明

本文仅代表作者观点,不代表航家之家立场。
本文系作者授权航家号发表,未经原创作者书面授权,任何单位或个人不得引用、复制、转载、摘编、链接或以其他任何方式复制发表。任何单位或个人在获得书面授权使用航空之家内容时,须注明作者及来源 “航空之家”。如非法使用航空之家的部分或全部内容的,航空之家将依法追究其法律责任。(航空之家官方QQ:2926969996)

航空之家 https://www.aerohome.com.cn/

航空商城 https://mall.aerohome.com.cn/

航空资讯 https://news.aerohome.com.cn/

分享:

扫一扫在手机阅读、分享本文

评论

相关推荐