基于图像特征的养殖饲料质量精细化检测方法与流程
未命名
09-24
阅读:84
评论:0
1.本发明涉及图像处理技术领域,特别涉及一种基于图像特征的养殖饲料质量精细化检测方法。
背景技术:
2.近年来,随着国内外市场的需求,家禽牲畜等养殖畜牧业逐渐规模化产业化,随之养殖饲料的需求越来越大,故养殖饲料工业的发展也不断进步,质量的要求也越来越高,在养殖饲料的生产过程中,由于养殖饲料生产工艺以及一些其它因素的影响,使生产的养殖饲料颗粒过大或者过小,而最终成品颗粒的大小与牲畜的消化吸收状况直接相关,因此对于养殖饲料颗粒的粒度质量的要求至关重要。
3.在养殖饲料生产加工过程中,采用机器视觉的手段对生产加工的养殖饲料进行粒度分析,可有效地减小人工检测的劳动强度,但由于养殖饲料颗粒分布密集,采集的图像数据中养殖饲料颗粒堆叠,养殖饲料颗粒的分布影响图像分割处理中的聚类结果,传统的图像分割方法对养殖饲料的颗粒图像处理精度较低,导致对图像数据的分割不准确,从而影响养殖饲料粒度质量分析的准确性。
技术实现要素:
4.为解决上述现有技术中图像数据分割不准确,影响养殖饲料粒度质量分析准确性的不足,本发明提供的基于图像特征的养殖饲料质量精细化检测方法,包括采集养殖饲料生产过程中的第一图像数据,并对所述第一图像数据进行预处理以得到第二图像数据;对所述第二图像数据进行初始分块,所述初始分块大小为;结合所述第二图像数据中的连通域判断初始图像块的饲料分布特征,所述分布特征包括原料复杂度、饲料不完整率及饲料粒度参考系数;根据所述饲料粒度参考系数通过粒度调整模型获取粒度调整度,以通过所述粒度调整度利用分块模型得到实际分块大小,并采用基于简单线性迭代聚类的超像素分割算法对所述第二图像数据进行分割得到第三图像数据;根据分割后的第三图像数据,利用饲料质量判断模型检测所述养殖饲料的质量。
5.在一实施例中,通过ccd工业相机采集所述第一图像数据,所述ccd工业相机位于养殖饲料传送带的上方;所述预处理包括采用中值滤波算法对所述第一图像数据进行降噪处理并转化为所述第二图像数据,所述第二图像数据为降噪后的灰度图像数据。
6.在一实施例中,采用canny边缘检测算法对所述第二图像数据进行处理得到二值图像数据,并标记所述二值图像数据的边缘像素点,结合所述二值图像数据通过连通域分析方法得到所述第二图像数据中的连通域。
7.在一实施例中,根据获取所述原料复杂度;其中,为初始图像块中第个连通域中第个原料小区域灰度值的均值,为第个连通域中原
料特征序列数值的均值, 为初始图像块第个连通域的原料复杂度,为原料小区域的个数;所述原料小区域为所述连通域面积小于连通域阈值的区域,每个所述连通域内原料小区域的灰度值均值为,每个所述连通域的原料特征序列为。
8.在一实施例中,选取所述连通域的某一像素点为起始点,沿边界方向获取边界像素点序列,通过得到所述连通域的颗粒不完整系数;其中,为边界序列的第1个像素点,为边界序列的第个像素点,为两个像素点的欧式距离。
9.在一实施例中,所述饲料不完整率根据获取;其中,为所述初始图像块的面积,为初始图像块中第个所述连通域的面积,为初始图像块第个连通域的原料复杂度,为颗粒完整阈值,为第个连通域的饲料不完整率。
10.在一实施例中,通过获取所述饲料粒度参考系数,其中,为初始图像块第个连通域的边界特征值,结合边界像素点利用傅里叶描述子方法获取所述连通域的边界特征向量,以所述边界特征向量的模为所述边界特征值;为初始图像块第个连通域的原料复杂度,为第个连通域的饲料不完整率,为初始图像块中连通域的个数,为所述第二图像数据中第个图像块的饲料粒度参考系数。
11.在一实施例中,所述粒度调整模型为,其中,为所述初始图像块的数量,为所述第二图像数据中第个图像块的饲料粒度参考系数,为饲料粒度参考系数对应的概率分布曲线的离散特征值,为归一化处理,为所述粒度调整度。
12.在一实施例中,所述分块模型为,其中,为初始分块的边长,为所述粒度调整度,为选取不大于的奇数,为实际分块的边长,所述实际分块大小为。
13.在一实施例中,所述饲料质量判断模型为,其中,为所述第三图像数据中实际粒度大小,为饲料颗粒的总数量,为第种
饲料颗粒中单一颗粒的面积,为第种饲料颗粒的数量,为饲料颗粒面积数值种类的数量,为合格饲料粒度大小,为养殖饲料合格度,当所述养殖饲料合格度超出饲料误差时,所述养殖饲料为不良品。
14.与现有技术相比,本发明提供的基于图像特征的养殖饲料质量精细化检测方法,通过对采集的养殖饲料图像数据进行初始分块,根据初始分块区域内养殖饲料颗粒的数量及分布特征,综合养殖饲料堆叠和颗粒不完整的情况,结合粒度调整度在聚类之前构建合适的实际分块大小,不仅降低了饲料颗粒堆叠对聚类的影响,还提高了超像素分割的效率以及采用超像素分割的准确性,进而确保养殖饲料质量分析检测的准确性。
附图说明
15.为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
16.图1为本发明提供的基于图像特征的养殖饲料质量精细化检测方法的流程示意图;图2为本发明提供的生产过程中所采集的养殖饲料的示意图;图3为本发明提供的养殖饲料堆叠和未堆叠的示意图;图4为本发明提供的不完整状态的养殖饲料示意图;图5为本发明提供的饲料粒度参考系数的概率分布曲线示意图。
具体实施方式
17.为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
18.在本发明的描述中,需要说明的是,术语“中心”、“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。
19.如图1所示,本发明提供的基于图像特征的养殖饲料质量精细化检测方法,包括:采集养殖饲料生产过程中的第一图像数据,并对所述第一图像数据进行预处理以得到第二图像数据;对所述第二图像数据进行初始分块,所述初始分块大小为;结合所述第二图像数据中的连通域判断初始图像块的饲料分布特征,所述分布特征包括原料复杂度、饲料不完整率及饲料粒度参考系数;根据所述饲料粒度参考系数通过粒度调整模型获取粒度调整度,以通过所述粒度调整度利用分块模型得到实际分块大小,并采用基于简
单线性迭代聚类的超像素分割算法对所述第二图像数据进行分割得到第三图像数据;根据分割后的第三图像数据,利用饲料质量判断模型检测所述养殖饲料的质量。
20.具体实施时,如图1、图2所示,在采集养殖饲料生产过程中的第一图像数据时,由于生产加工过程中的养殖饲料颗粒相对较小,故采用高分辨率的ccd工业相机进行拍摄采集养殖饲料生产过程中的第一图像数据,较佳地,为有效地采集养殖饲料生产过程中的图像数据,本实施例中ccd工业相机位于养殖饲料生产过程中传送带的正上方。
21.由于养殖饲料生产车间的环境复杂,例如存在光照等因素的影响,使采集的第一图像数据中存在较多的干扰,导致第一图像数据的质量较差,影响后续对养殖饲料图像数据的分割处理的准确性;因此,对采集的第一图像数据进行预处理,具体地,预处理包括采用中值滤波算法对第一图像数据进行降噪处理,以较好的保留图像数据中的边界信息,并将降噪后的图像数据转化为第二图像数据,本实施例中,第二图像数据为降噪后的灰度图像数据,转化为灰度图像数据的方式为现有技术中常见的图像处理技术手段,例如加权灰度化方法、最大值灰度化方法、最小值灰度化方法或平均值灰度化方法等方法,在此不再赘述。
22.如图2、图3所示,在养殖饲料生产过程中,由于使用传送带传送运输养殖饲料,导致采集的图像数据中养殖饲料是散乱分布且相互堆叠在一起,因此,若直接采用聚类方法对养殖饲料图像数据进行聚类时,由于养殖饲料颗粒之间的形状和表面特征相似,聚类簇之间的均匀性相对较差,属于不同区域的像素点聚类时会到同一个聚类中心,使颗粒的分割产生较大的误差,影响养殖饲料粒度的质量分析和判断,即影响养殖饲料的颗粒大小判断和分析。
23.为此,在聚类之前应调整选择合适的图像数据分块大小,再采用基于slic(简称简单线性迭代聚类)的超像素分割算法对养殖饲料图像数据进行分割后,在合适的图像块内进行聚类及后续的处理。
24.具体地,首先对第二图像数据进行初始分块,本实施例中,每个初始图像块大小为;的值可以是21,亦可以是20、22、23或24等;再结合第二图像数据中的连通域判断初始图像块的饲料分布特征;第二图像数据中的连通域通获取方式包括:采用canny边缘检测算法对第二图像数据进行处理,得到养殖饲料边界的二值图像数据,并标记二值图像数据的边缘像素点,以养殖饲料边界的二值图像数据为输入,通过连通域分析方法得到第二图像数据中的连通域。
25.如图3所示,其次,由于养殖饲料之间可能存在堆叠,也可能互不堆叠散乱分布,因此可根据每个初始图像块中的养殖饲料数量以及养殖饲料的分布特征进行具体分析,分布特征包括原料复杂度、饲料不完整率及饲料粒度参考系数。
26.具体地,由于养殖饲料通常通过多种原料制作而成,因此养殖饲料颗粒的表面由于较多种材料的组成,会出现较多的原料小区域,原料小区域为连通域面积小于连通域阈值的区域,即养殖饲料颗粒表面会因原料不同构成不同的小连通域,此部分小连通域的面积小于连通域阈值,本实施例中,连通域阈值可以是10,亦可以是9、11或12等。
27.初始图像块中每个连通域内原料小区域灰度值均值为,每个养殖饲料颗粒连通域的原料特征序列为,为原料小区域的个数;上述小于连通域阈值的原料小区域数量以及其之间的差异可以表示养殖饲料颗粒连通域表面的复杂程度;
由此,可根据获取原料复杂度;其中,为初始图像块中第个连通域中第个原料小区域灰度值的均值,为第个连通域中原料特征序列数值的均值,为初始图像块第个连通域的原料复杂度,为原料小区域的个数;由于养殖饲料颗粒堆叠时,相应的养殖饲料颗粒连通域面积会增大,即包含的原料小区域数量增大,对应的原料复杂度也随之增大。
28.如图4所示,由于初始分块原因导致初始图像块中的养殖饲料连通域分块,导致养殖饲料颗粒连通域存在不完整的现象;为此,通过选取养殖饲料颗粒连通域某一像素点为起点,较佳地,本实施例中选取连通域一个边界像素点为起始点,沿边界方向则可得到养殖饲料颗粒连通域边界像素点序列;边界像素点序列中起始像素点与最后一个像素点之间的欧式距离可代表连通域的颗粒不完整系数;以第个连通域即边界序列为例,通过可得到连通域的颗粒不完整系数;其中,边界序列中像素点数量为,为边界序列的第1个像素点,为边界序列的第个像素点,第个像素点是边界序列中最后一个像素点,表示计算两个像素点的欧式距离,为两个像素点的欧式距离代表第个养殖饲料颗粒连通域的颗粒不完整系数。
29.接着根据获取饲料不完整率,其中,为初始图像块的面积,为初始图像块中第个养殖饲料颗粒连通域的面积,为初始图像块第个养殖饲料连通域的原料复杂度,为初始图像块中第个连通域的饲料不完整率,为颗粒完整阈值,本实施例中,颗粒完整阈值可以是3,亦可以是2、4或5等。当初始图像块中连通域面积越大,且不完整的连通域的原料复杂度越高,则说明该连通域的不完整率越小,反之,该连通域的不完整率越大。
30.由于养殖饲料的堆叠较为严重时会影响聚类的结果,因此本技术通过边界特征来进一步表面初始图像块中养殖饲料的堆叠程度;具体地,以养殖饲料颗粒连通域的边界像素点集合为输入,采用傅里叶描述子方法可以得到一组边界描述子,根据描述子可以得到养殖饲料连通域的边界特征向量,边界特征向量中数值的数量为,计算边界特征向量的模作为养殖饲料颗粒连通域的边界特征值。
31.然后通过获取饲料粒度参考系数,其中,为初始图像块第个连通域的边界特征值,为初始图像块第个连通域的原料复杂度,为初始图像块第个连通域的饲料不完整率,为初始图像块中连通域的个数,为第二图像数据中第个图像块的饲料粒度参考系数。
32.当初始划分的初始图像块中出现较多的不完整颗粒或较多堆叠的情况时,则和的值越大,对应的饲料粒度参考系数也越大,说明初始图像块的划分不利于聚类的准确性。
33.因此,考虑到第二图像数据中的饲料粒度参考系数离散情况,根据每个初始图像块对应的饲料粒度参考系数,计算其概率分布曲线,如图5所示,曲线的横坐标x为饲料粒度参考系数的值,曲线的纵坐标y为饲料粒度参考系数出现的频率;根据得到的概率分布曲线,可得到概率分布曲线的熵,其表明了曲线的离散特征值。
34.根据概率分布曲线的离散特征值和上述获取到的饲料粒度参考系数的均值,通过粒度调整模型获取粒度调整度,以通过粒度调整度利用分块模型得到实际分块大小,较佳地,粒度调整模型为,其中,为初始图像块的数量,为第二图像数据中第个图像块的饲料粒度参考系数,为饲料粒度参考系数对应的概率分布曲线的离散特征值,为粒度调整度,为归一化处理,使得粒度调整度的值域为。
35.第二图像数据在初始分块下,整体的饲料粒度参考系数越小,且数值的离散程度越小,则说明初始分块的效果相对较好,初始分块与实际分块之间的调整越小;反之,初始分块与实际分块之间的调整越大。
36.然后根据上述分析处理,可通过分块模型可得到实际分块的大小,其中,为初始分块的边长,为粒度调整度,为选取不大于的奇数,为实际分块的边长,由此,实际分块大小为。
37.因此在采用超像素分割算法对第二图像数据进行处理,超像素的大小为,超像素的数量为,本技术中实际分块的数量即为超像素的数量,例如若图像的分辨率为1000*1000,则),得到分割后的第三图像数据,即得到分割后的养殖饲料结果图像数据。
38.最后,根据上述得到的分割后的第三图像数据,统计分割饲料颗粒图像数据的大小,即统计每个养殖饲料颗粒连通域内像素点的个数,得到颗粒面积序列,分割的养殖饲料颗粒的数量为,则可通过饲料质量判断模型计算养殖饲料的合格度;其中,为第三图像数据中养殖饲料的实际粒度大小,为分割的第三图像数据中养殖饲料颗粒的总数量,为分割的第三图像数据中第种饲料颗粒中单一
颗粒的面积,为分割的第三图像数据中第种饲料颗粒的数量,为分割的第三图像数据中饲料颗粒面积数值种类的数量,为合格饲料粒度大小,相同面积的养殖饲料颗粒图像为同一种颗粒,为养殖饲料合格度。
39.根据养殖饲料合格度与饲料误差之间的关系可判断,所加工生产的养殖饲料是否合格,当养殖饲料合格度超出饲料误差时,养殖饲料为不良品,较佳地,本实施例中饲料误差为[0,5],饲料误差亦可以是[0,4]或[0,6]等,即当养殖饲料合格度大于0且小于5时,所加工生产的养殖饲料为合格良品。
[0040]
与现有技术相比,本发明提供的基于图像特征的养殖饲料质量精细化检测方法,通过对采集的养殖饲料图像数据进行初始分块,根据初始分块区域内养殖饲料颗粒的数量及分布特征,综合养殖饲料堆叠和颗粒不完整的情况,结合粒度调整度在聚类之前构建合适的实际分块大小,不仅降低了饲料颗粒堆叠对聚类的影响,还提高了超像素分割的效率以及采用超像素分割的准确性,进而确保养殖饲料质量分析检测的准确性。
[0041]
另外,本领域技术人员应当理解,尽管现有技术中存在许多问题,但是,本发明的每个实施例或技术方案可以仅在一个或几个方面进行改进,而不必同时解决现有技术中或者背景技术中列出的全部技术问题。本领域技术人员应当理解,对于一个权利要求中没有提到的内容不应当作为对于该权利要求的限制。
[0042]
本文中使用这些术语仅仅是为了更方便地描述和解释本发明的本质;把它们解释成任何一种附加的限制都是与本发明精神相违背的;本发明实施例的说明书和权利要求书及上述附图中的术语“第一”、“第二”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
[0043]
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。
技术特征:
1.基于图像特征的养殖饲料质量精细化检测方法,其特征在于:包括:采集养殖饲料生产过程中的第一图像数据,并对所述第一图像数据进行预处理以得到第二图像数据;对所述第二图像数据进行初始分块,所述初始分块大小为;结合所述第二图像数据中的连通域判断初始图像块的饲料分布特征,所述分布特征包括原料复杂度、饲料不完整率及饲料粒度参考系数;根据所述饲料粒度参考系数通过粒度调整模型获取粒度调整度,以通过所述粒度调整度利用分块模型得到实际分块大小,并采用基于简单线性迭代聚类的超像素分割算法对所述第二图像数据进行分割得到第三图像数据;根据分割后的第三图像数据,利用饲料质量判断模型检测所述养殖饲料的质量。2.根据权利要求1所述的基于图像特征的养殖饲料质量精细化检测方法,其特征在于:通过ccd工业相机采集所述第一图像数据,所述ccd工业相机位于养殖饲料传送带的上方;所述预处理包括采用中值滤波算法对所述第一图像数据进行降噪处理并转化为所述第二图像数据,所述第二图像数据为降噪后的灰度图像数据。3.根据权利要求1所述的基于图像特征的养殖饲料质量精细化检测方法,其特征在于:采用canny边缘检测算法对所述第二图像数据进行处理得到二值图像数据,并标记所述二值图像数据的边缘像素点,结合所述二值图像数据通过连通域分析方法得到所述第二图像数据中的连通域。4.根据权利要求1所述的基于图像特征的养殖饲料质量精细化检测方法,其特征在于:根据获取所述原料复杂度;其中,为初始图像块中第个连通域中第个原料小区域灰度值的均值,为第个连通域中原料特征序列数值的均值,为初始图像块第个连通域的原料复杂度,为原料小区域的个数;所述原料小区域为所述连通域面积小于连通域阈值的区域,每个所述连通域内原料小区域的灰度值均值为,每个所述连通域的原料特征序列为。5.根据权利要求1所述的基于图像特征的养殖饲料质量精细化检测方法,其特征在于:选取所述连通域的某一像素点为起始点,沿边界方向获取边界像素点序列,通过得到所述连通域的颗粒不完整系数;其中,为边界序列的第1个像素点,为边界序列的第个像素点,为两个像素点的欧式距离。6.根据权利要求5所述的基于图像特征的养殖饲料质量精细化检测方法,其特征在于:所述饲料不完整率根据获取;其中,为所述初始图像块的面积,为初始图像块中第个所述连通域的面积,为初始图像块第个连通域的原料复杂度,为颗粒完整阈值,为第个连通域的饲料不完整率。
7.根据权利要求1所述的基于图像特征的养殖饲料质量精细化检测方法,其特征在于:通过获取所述饲料粒度参考系数,其中,为初始图像块第个连通域的边界特征值,结合边界像素点利用傅里叶描述子方法获取所述连通域的边界特征向量,以所述边界特征向量的模为所述边界特征值;为初始图像块第个连通域的原料复杂度,为第个连通域的饲料不完整率,为初始图像块中连通域的个数,为所述第二图像数据中第个图像块的饲料粒度参考系数。8.根据权利要求1所述的基于图像特征的养殖饲料质量精细化检测方法,其特征在于:所述粒度调整模型为其中,为所述初始图像块的数量,为所述第二图像数据中第个图像块的饲料粒度参考系数,为饲料粒度参考系数对应的概率分布曲线的离散特征值,为归一化处理,为所述粒度调整度。9.根据权利要求1所述的基于图像特征的养殖饲料质量精细化检测方法,其特征在于:所述分块模型为,其中,为初始分块的边长,为所述粒度调整度,为选取不大于的奇数,为实际分块的边长,所述实际分块大小为。10.据权利要求1所述的基于图像特征的养殖饲料质量精细化检测方法,其特征在于:所述饲料质量判断模型为,其中,为所述第三图像数据中实际粒度大小,为饲料颗粒的总数量,为第种饲料颗粒中单一颗粒的面积,为第种饲料颗粒的数量,为饲料颗粒面积数值种类的数量,为合格饲料粒度大小,为养殖饲料合格度,当所述养殖饲料合格度超出饲料误差时,所述养殖饲料为不良品。
技术总结
本发明涉及图像处理技术领域,特别涉及基于图像特征的养殖饲料质量精细化检测方法,包括采集养殖饲料生产过程中的第一图像数据,并对第一图像数据进行预处理以得到第二图像数据;对第二图像数据进行初始分块;结合第二图像数据中的连通域判断初始图像块的饲料分布特征,分布特征包括原料复杂度、饲料不完整率及饲料粒度参考系数;根据饲料粒度参考系数通过粒度调整模型获取粒度调整度,以通过粒度调整度利用分块模型得到实际分块大小,并采用基于简单线性迭代聚类的超像素分割算法对第二图像数据进行分割得到第三图像数据;根据分割后的第三图像数据,利用饲料质量判断模型检测所述养殖饲料的质量;确保养殖饲料质量分析检测的准确性。测的准确性。测的准确性。
技术研发人员:刘学峰 刘超 宋锦峰 付振远 董强 韩少峰 高辉
受保护的技术使用者:山东万牧农业科技有限公司郯城分公司
技术研发日:2023.08.22
技术公布日:2023/9/22
版权声明
本文仅代表作者观点,不代表航家之家立场。
本文系作者授权航家号发表,未经原创作者书面授权,任何单位或个人不得引用、复制、转载、摘编、链接或以其他任何方式复制发表。任何单位或个人在获得书面授权使用航空之家内容时,须注明作者及来源 “航空之家”。如非法使用航空之家的部分或全部内容的,航空之家将依法追究其法律责任。(航空之家官方QQ:2926969996)
航空之家 https://www.aerohome.com.cn/
航空商城 https://mall.aerohome.com.cn/
航空资讯 https://news.aerohome.com.cn/