一种耐等离子体腐蚀涂层结构及其制备方法与流程
未命名
09-24
阅读:42
评论:0
1.本发明属于半导体设备领域,涉及一种涂层材料,具体涉及一种耐等离子体腐蚀涂层结构及其制备方法。
背景技术:
2.等离子体蚀刻制程在集成电路制造领域发挥着至关重要的作用。制程中,物理轰击及等离子体的化学反应作用也会同样作用于刻蚀腔室内部所有与等离子体接触的部件,造成腐蚀。对于处在刻蚀腔体内的部件而言,通常会涂覆一些耐等离子体腐蚀的涂层以保护部件不被腐蚀,如涂敷氧化钇(y2o3)涂层,以抗氟离子腐蚀。
3.然而,目前等离子体蚀刻制程中,越来越频繁地涉及到含氢等离子体的使用。当工艺气体中氢含量越高,等离子能量密度越高时,产生的还原性氢自由基也越多。刻蚀机内部主要部件如喷淋头仍使用y2o3涂层,当该涂层面临大量具有还原性氢自由基时,氧化钇表面和晶格氧原子易与氢自由基结合,生成-oh物种,继而产生氧缺陷导致涂层被腐蚀,并产生颗粒污染。
技术实现要素:
4.本发明的目的是解决暴露在等离子刻蚀环境中的刻蚀机内部零部件的耐等离子体腐蚀的问题,尤其是耐氢腐蚀。
5.为了达到上述目的,本发明提供了一种耐等离子体腐蚀涂层结构,该涂层结构包含设置在基底上交替排列的过渡层和抗氢层,所述过渡层覆盖所述基底,用于增强基底与抗氢层的结合力,所述抗氢层形成在所述过渡层上,其中,所述抗氢层包含稀土金属碳化物。
6.可选的,所述涂层结构的最外层为所述抗氢层。
7.可选的,所述稀土金属碳化物具有层状结构。
8.可选的,所述稀土金属包含钪、钇、镧、铈、铒中的任意一种或任意多种的组合。
9.可选的,所述抗氢层包含yc2。
10.可选的,所述的过渡层包含y2o3、yof、yf3中的任意一种或任意两种以上的组合。
11.本发明还提供了一种耐等离子体腐蚀涂层的制备方法,包含:
12.提供一基底;
13.在所述基底上形成过渡层;
14.在所述过渡层上形成抗氢层;
15.其中,所述的抗氢层包含稀土金属碳化物,所述的过渡层用于增强基底与抗氢层之间的结合力。
16.可选的,该方法包含若干次交替形成过渡层、抗氢层的循环。
17.可选的,所述的稀土金属包含钪、钇、镧、铈、铒中的任意一种或任意多种的组合。
18.可选的,所述的抗氢层包含yc2。
19.可选的,所述的抗氢层通过原子层沉积(ald)、化学气相沉积(cvd)、物理气相沉积(pvd)、热喷涂或等离子喷涂中的任意一种方式制备。
20.可选的,所述的过渡层包含y2o3、yof、yf3中的任意一种或任意两种以上的组合。
21.可选的,所述的过渡层通过ald、cvd、pvd、热喷涂或等离子喷涂中的任意一种制备。
22.本发明还提供了一种等离子处理装置,包含等离子处理腔室,其暴露于所述腔室内的工件表面设有上述的耐等离子体腐蚀涂层结构。
23.可选的,该装置为电感耦合等离子体处理装置,所述的工件包括:衬套、气体喷嘴、静电吸盘组件、聚焦环、绝缘环、覆盖环、等离子体约束装置、陶瓷盖板或气体连接法兰中的至少一种。
24.可选的,该装置为电容耦合等离子体处理装置,所述的工件包括:喷淋头、上接地环、移动环、气体分配板、气体缓冲板、静电吸盘组件、下接地环、覆盖环、绝缘环或等离子体约束装置中的至少一种。
25.与现有技术相比,本发明具有以下有益效果:
26.本发明通过在半导体零部件的基底上交替生长过渡层、抗氢层形成耐等离子体腐蚀涂层结构,利用稀土金属碳化物中碳离子丰富的表面化学键与氢离子发生络合反应,达到捕获氢自由基的目的,提高半导体零部件的服役寿命,利用过渡层提高抗氢层与基层、抗氢层与抗氢层的结合力,可根据需要设置多层抗氢层、过渡层,起到实际做厚抗氢层的效果。
附图说明
27.图1为本发明的一种等离子体处理装置的结构示意图。
28.图2为本发明的一种耐等离子体腐蚀涂层结构的示意图。
29.图3为本发明的抗氢层捕获氢自由基的状态示意图。
30.图4为本发明的一种耐等离子体腐蚀涂层结构的制备方法流程图。
具体实施方式
31.下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
32.在本发明的描述中,需要说明的是,术语“上”、“下”、“左”、“右”、“垂直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
33.在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
34.等离子处理工艺中,等离子处理装置的反应腔处于等离子体环境,设于反应腔内的半导体零部件暴露于等离子体环境中,易受到等离子体的腐蚀。因此,需要在所述半导体零部件上设置耐腐蚀涂层,以阻挡等离子体对半导体零部件本体的腐蚀,提高半导体零部件的使用寿命。
35.为了抗等离子体腐蚀,可在半导体零部件本体的基底上涂敷y2o3涂层和/或yof涂层,但其在含有大量氢自由基的等离子体环境中容易变灰变黑。原因是由于氧元素的化学价态为-2价,一旦与入侵的氢自由基络合生成-oh物种,那么y元素将处于配位不饱和的状态,进而形成氧缺陷,而使得涂层变灰变黑。对于具有大量氢自由基的等离子环境,现有的耐腐蚀涂层的抗腐蚀效果不佳。
36.为解决上述技术问题,本发明设计一抗氢层作为氢自由基的阻挡层,利用稀土金属碳化物中碳元素的-4价态捕获更多的氢自由基,辅助提高耐等离子涂层的耐腐蚀性能。
37.本发明的技术方案是提供一种耐等离子体腐蚀涂层结构及其制备方法,该涂层结构包含设置在半导体零部件基底上交替排列的过渡层和抗氢层,所述过渡层覆盖所述基底,用于增强基底与抗氢层的结合力,所述抗氢层形成在所述过渡层上,其中,所述抗氢层包含稀土金属碳化物,用于捕获氢自由基,作为氢自由基的阻挡层。
38.为使本发明的上述目的、特征和有益效果能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。
39.本发明的等离子体处理装置可以是等离子体蚀刻装置、等离子化学气相沉积装置、等离子体清洁装置,只要是需要暴露在等离子体环境的零部件,都可以设置本发明实施例的耐等离子体腐蚀涂层结构,对零部件进行保护。以下以所述等离子体蚀刻装置为电感耦合等离子体蚀刻装置进行说明。
40.如图1所示,本发明的一种等离子体蚀刻装置包括:
41.反应腔109,位于基板w上方的空间a为等离子体环境;腔室内部的半导体零部件暴露于等离子体环境中。
42.基座110,用于承载待处理基板w,等离子体用于对待处理基板w进行处理。
43.由于等离子体具有较强的腐蚀性,为了防止半导体零部件本体的表面被等离子体腐蚀,因此需要在半导体零部件本体的表面形成耐等离子体腐蚀涂层。在本实施例中,等离子体反应装置为电感耦合等离子体反应装置,相应的,暴露于等离子体环境中的半导体零部件包括:衬套101、气体喷嘴102、静电吸盘组件103、聚焦环104、绝缘环105、覆盖环106、等离子体约束装置107、陶瓷盖板108或气体连接法兰(图中未示)等,这些零部件的表面需要涂覆耐腐蚀涂层以防止等离子体的腐蚀。本例中,在这些零部件的本体基底上形成本发明的耐等离子体腐蚀涂层结构200(参考图2)。
44.具体应用中,等离子体反应装置也可以为电容耦合等离子体反应装置,相应的,暴露于等离子体环境中的零部件包括:喷淋头、上接地环、移动环、气体分配板、气体缓冲板、静电吸盘组件、下接地环、覆盖环、绝缘环或等离子体约束装置中的至少一种,这些零部件的表面需要涂覆耐腐蚀涂层以防止等离子体的腐蚀。本例中,在这些零部件的本体基底上形成本发明的耐等离子体腐蚀涂层结构。
45.以下对本发明的耐等离子体腐蚀涂层结构进行详细说明:
46.如图2所示,耐等离子体腐蚀涂层结构200包含设置在半导体零部件本体的基底
201上交替排列的过渡层202b和抗氢层202a。所述过渡层202b覆盖所述半导体零部件本体的基底201,用于增强基底201与抗氢层202a的结合力,所述抗氢层202a形成在所述过渡层202b上。
47.所述抗氢层202a优选稀土金属碳化物。利用碳化物中碳元素的-4价态捕获更多的氢自由基。一些实施例中,所述稀土金属碳化物具有层状微观结构,可实现层层捕获氢自由基,即使表面未被捕获的氢自由基扩散至内部,也会被下一层碳离子捕获,有效达到阻挡目的。所述稀土金属可选钪、钇、镧、铈、铒中的任意一种或任意多种的组合。
48.一些实施例中,所述抗氢层包含yc2。如图3所示,为层状yc2对氢自由基捕获的示意图。外层未被捕获的氢自由基扩散入内层,会被内层的c离子捕获,通过交替设置层状结构的yc2能够对氢自由基起到理想的阻挡效果。
49.由于具有层状微观结构的抗氢层与基底的结合力不够强,本例中,先在半导体零部件本体的基底上形成一层过渡层,以提高抗氢层与基底的结合力,再形成一抗氢层。所述的过渡层包含y2o3、yof、yf3中的任意一种或任意两种以上的组合。
50.本发明的一些实施例中,将y2o3涂层作为过渡层,在其上形成抗氢层yc2,以提高涂层的抗氢腐蚀性能。
51.由于抗氢层202a自身层状的结构以及性能的限制,不同层之间的结合是通过范德华力,因此无法直接通过做厚抗氢层实现对氢自由基的完全捕获,也需要在其上形成一过渡层202b,再形成一抗氢层202a,通过形成交替排布的抗氢层202a和过渡层202b的涂层结构(相当于实际作厚抗氢层)达到更好的捕获氢自由基,抗氢腐蚀的目的。一些实施例中,当对半导体零部件的耐腐蚀性要求较高时,可以通过形成多层交替排列的过渡层202b和抗氢层202a。
52.根据不同应用场景对零部件的耐腐蚀的要求不同或者零部件的基底粗糙度不同,本发明的耐等离子体腐蚀涂层结构200可以包含一层或多层过渡层202b和抗氢层202a。如,基底的表面粗糙度ra为5~7,需要形成2~3层过渡层202b、抗氢层202a。
53.所述的过渡层202b至少具有以下作用:1)提高基底层与抗氢层之间的结合力;2)提高抗氢层与抗氢层之间的结合力,解决抗氢层无法做厚的问题;3)形成对f、o等等离子体的阻挡作用。
54.一些实施例中,所述涂层结构的最外层为抗氢层202a。
55.在一些其他实施例中,由于每层过渡层和抗氢层都很薄(~20um),如果抗氢层不是设置在最外层也可以,氢自由基经由过渡层逸散进入抗氢层后,可被捕捉。
56.相应地,本发明还提供了一种耐等离子体腐蚀涂层的制备方法,如图4所示,该方法包含:
57.步骤s1,提供一基底;
58.步骤s2,在所述基底上形成过渡层;
59.步骤s3,在所述过渡层上形成抗氢层;
60.其中,所述的抗氢层包含稀土金属碳化物,所述的过渡层用于增强基底与抗氢层之间的结合力。
61.为了提高涂层的耐腐蚀能力,该方法包含若干次交替形成过渡层、抗氢层的循环。所述的抗氢层、过渡层均可通过原子层沉积(ald)、化学气相沉积(cvd)、物理气相沉积
(pvd)、热喷涂或等离子喷涂中的任意一种方式制备。可以根据零部件的表面结构、对耐腐蚀性能的要求等不同,采用不同的方法形成抗氢层、过渡层。在一些实施例中,对于具有复杂的孔洞结构的零部件,可主要通过ald沉积形成抗氢层、过渡层,以提高涂层对零部件的覆盖密度。比如,在对气体喷淋头的表面涂覆耐等离子腐蚀涂层时,由于气体喷淋孔的直径非常小,通常仅为0.5mm,因此,通过ald沉积的抗氢层和过渡层可以更好覆盖气体喷淋孔的内部,与pvd涂层相比,不存在阴影效应导致的涂层柱状生长而形成的不够致密的抗腐蚀涂层。
62.在一些实施例中,当零部件基底的粗糙度不够,可先通过热喷涂或pvd形成过渡层,再通过ald、cvd、pvd、热喷涂或等离子喷涂形成抗氢层。
63.需要说明的是,本方案中涉及到的各步骤的限定,在不影响具体方案实施的前提下,并不认定为对步骤先后顺序做出限定,写在前面的步骤可以是在先执行的,也可以是在后执行的,甚至也可以是同时执行的,只要能实施本方案,都应当视为属于本发明的保护范围。
64.综上所述,本发明通过在半导体零部件的基底上交替生长过渡层、抗氢层形成耐等离子体腐蚀涂层结构,利用稀土金属碳化物的碳离子丰富的表面化学键与氢离子发生络合反应,达到捕获氢自由基的目的,利用稀土金属碳化物的层状微观结构,达到有效捕获氢自由基,尽量避免其扩散至过渡层的目的,提高半导体零部件的服役寿命。
65.尽管本发明的内容已经通过上述优选实施例作了详细介绍,但应当认识到上述的描述不应被认为是对本发明的限制。在本领域技术人员阅读了上述内容后,对于本发明的多种修改和替代都将是显而易见的。因此,本发明的保护范围应由所附的权利要求来限定。
技术特征:
1.一种耐等离子体腐蚀涂层结构,其特征在于,该涂层结构包含设置在基底上交替排列的过渡层和抗氢层,所述过渡层覆盖所述基底,用于增强基底与抗氢层的结合力,所述抗氢层形成在所述过渡层上,其中,所述抗氢层包含稀土金属碳化物。2.如权利要求1所述的耐等离子体腐蚀涂层结构,其特征在于,所述涂层结构的最外层为所述抗氢层。3.如权利要求1所述的耐等离子体腐蚀涂层结构,其特征在于,所述稀土金属碳化物具有层状结构。4.如权利要求3所述的耐等离子体腐蚀涂层结构,其特征在于,所述稀土金属包含钪、钇、镧、铈、铒中的任意一种或任意多种的组合。5.如权利要求4所述的耐等离子体腐蚀涂层结构,其特征在于,所述抗氢层包含yc2。6.如权利要求1-5中任意一项所述的耐等离子体腐蚀涂层结构,其特征在于,所述的过渡层包含y2o3、yof、yf3中的任意一种或任意两种以上的组合。7.一种耐等离子体腐蚀涂层的制备方法,其特征在于,包含:提供一基底;在所述基底上形成过渡层;在所述过渡层上形成抗氢层;其中,所述的抗氢层包含稀土金属碳化物,所述的过渡层用于增强基底与抗氢层之间的结合力。8.如权利要求7所述的耐等离子体腐蚀涂层的制备方法,其特征在于,该方法包含若干次交替形成过渡层、抗氢层的循环。9.如权利要求7所述的耐等离子体腐蚀涂层的制备方法,其特征在于,所述的稀土金属包含钪、钇、镧、铈、铒中的任意一种或任意多种的组合。10.如权利要求9所述的耐等离子体腐蚀涂层的制备方法,其特征在于,所述的抗氢层包含yc2。11.如权利要求7所述的耐等离子体腐蚀涂层的制备方法,其特征在于,所述的抗氢层通过ald、cvd、pvd、热喷涂或等离子喷涂中的任意一种方式制备。12.如权利要求7所述的耐等离子体腐蚀涂层的制备方法,其特征在于,所述的过渡层包含y2o3、yof、yf3中的任意一种或任意两种以上的组合。13.如权利要求7所述的耐等离子体腐蚀涂层的制备方法,其特征在于,所述的过渡层通过ald、cvd、pvd、热喷涂或等离子喷涂中的任意一种制备。14.一种等离子处理装置,包含等离子处理腔室,其特征在于,暴露于所述腔室内的工件表面设有权利要求1-6中任意一项所述的耐等离子体腐蚀涂层结构。15.如权利要求14所述的等离子处理装置,其特征在于,该装置为电感耦合等离子体处理装置,所述的工件包括:衬套、气体喷嘴、静电吸盘组件、聚焦环、绝缘环、覆盖环、等离子体约束装置、陶瓷盖板或气体连接法兰中的至少一种。16.如权利要求14所述的等离子处理装置,其特征在于,该装置为电容耦合等离子体处理装置,所述的工件包括:喷淋头、上接地环、移动环、气体分配板、气体缓冲板、静电吸盘组件、下接地环、覆盖环、绝缘环或等离子体约束装置中的至少一种。
技术总结
本发明公开了一种耐等离子体腐蚀涂层结构及其制备方法,该涂层结构包含设置在基底上交替排列的过渡层和抗氢层,所述过渡层覆盖所述基底,用于增强基底与抗氢层的结合力,所述抗氢层形成在所述过渡层上,其中,所述抗氢层包含稀土金属碳化物。本发明通过在半导体零部件的基底上交替生长过渡层、抗氢层形成耐等离子体腐蚀涂层结构,利用稀土金属碳化物的碳离子丰富的表面化学键与氢离子发生络合反应,达到捕获氢自由基的目的,利用稀土金属碳化物的层状微观结构,达到有效捕获氢自由基,尽量避免其扩散至过渡层的目的,提高半导体零部件的服役寿命。服役寿命。服役寿命。
技术研发人员:孙祥 郭盛 朱生华
受保护的技术使用者:中微半导体设备(上海)股份有限公司
技术研发日:2022.03.17
技术公布日:2023/9/22
版权声明
本文仅代表作者观点,不代表航家之家立场。
本文系作者授权航家号发表,未经原创作者书面授权,任何单位或个人不得引用、复制、转载、摘编、链接或以其他任何方式复制发表。任何单位或个人在获得书面授权使用航空之家内容时,须注明作者及来源 “航空之家”。如非法使用航空之家的部分或全部内容的,航空之家将依法追究其法律责任。(航空之家官方QQ:2926969996)
航空之家 https://www.aerohome.com.cn/
航空商城 https://mall.aerohome.com.cn/
航空资讯 https://news.aerohome.com.cn/