从初始天然气流中提取乙烷的方法和相应的设备与流程

未命名 09-22 阅读:167 评论:0


1.本发明涉及一种从初始天然气流中提取乙烷的方法,该方法包括以下步骤:
[0002]-在至少一个第一上游热交换器中冷却初始天然气流,以形成冷却天然气流;
[0003]-将冷却天然气流分离成液流和气流;
[0004]-膨胀所述液流并将来自液流的至少一股流在第一高度处引入用于分离甲烷和c2+烃的分离塔;
[0005]-由气流形成涡轮进料流;
[0006]-在动态膨胀涡轮中膨胀所述涡轮进料流,并将来自动态膨胀涡轮的膨胀流在第二高度处引入分离塔;
[0007]-将从分离塔回收的富含c2+烃的底流引入分馏塔,并从分馏塔回收乙烷流;
[0008]-回收并压缩来自分离塔的顶流的至少一部分以形成压缩净化天然气流;
[0009]-在液化单元中对压缩净化天然气流进行液化以形成加压液化天然气流;
[0010]-对加压液化天然气流进行闪蒸膨胀,并在储存器中回收膨胀液化天然气;
[0011]-回收来自所述加压液化天然气流膨胀的至少一股闪蒸气流;
[0012]-压缩所述至少一股闪蒸气流。


背景技术:

[0013]
这种方法特别是用于从初始天然气中提取乙烷和c3+烃,同时产生加压处理后的天然气,加压处理后的天然气然后在被膨胀以储存之前被液化。
[0014]
乙烯、乙烷、丙烯、丙烷和较重烃可以从例如天然气、炼油厂气体和从其他烃源如煤、原油、石脑油获得的合成气体的气体中提取。
[0015]
天然气通常含有大部分的甲烷和乙烷(例如,甲烷和乙烷构成气体的至少50mol%)。天然气还可以含有数量更可忽略不计的较重烃如丙烷、丁烷、戊烷以及还有氢气、氮气和二氧化碳。
[0016]
这里描述的发明更特别的是涉及从天然气中回收乙烷、丙烷和较重烃。除天然气中的重质烃如乙烷、丙烷和丁烷能以高纯度分别贩卖而获得很高价值的事实外,这些烃可能会在运输过程中冷凝或在液化交换器中冻结(对于最重的烃)。
[0017]
上述情况可能导致发生事故,如运输设施中出现液塞或液化厂关闭以疏通冻结的交换器。
[0018]
文献us 6 578 379描述了一种从天然气流中回收乙烷和丙烷的非常有效的方法。这种方法通常以非常有效的方式运行,特别是以便获得天然气进料中所含的乙烷的非常高的提取率(例如大于99mol%),同时最小化能耗。
[0019]
为获得这样的提取率,已知使用乙烷极贫流作为主回流即用于甲烷和乙烷分离塔的最高回流。
[0020]
为此,从来自甲烷和乙烷分离塔顶部的再压缩气体中提取再流通流。所述再流通流以与来自塔顶部的气体逆流的方式被冷却,然后被膨胀以形成引入塔顶部处的主回流。
[0021]
然而,在某些操作条件下,主回流的质量可能在温度和/或组成方面会发生恶化。
[0022]
例如,如果主回流变得贫甲烷,则塔中的乙烷分离率就会下降,在塔顶部处产生的顶流的质量就会进一步恶化,从而加剧主回流中的甲烷贫化。则出现“滚雪球”效应,从而导致乙烷提取率大幅下降。特别是如果液体被夹裹在塔的上板上,就可能会出现这种情况。


技术实现要素:

[0023]
本发明的一目的是提供一种灵活和非常有效的从初始天然气流中提取乙烷和c3+烃的方法,其中在分离塔顶流质量发生波动时乙烷提取率根本不受影响或只受轻微影响。
[0024]
为此,本发明的主题是一种上述类型的方法,其特征在于以下步骤:
[0025]-将压缩闪蒸气流分离成燃料流和再循环流;
[0026]-冷却并至少部分地膨胀所述再循环流,然后将冷却和膨胀的再循环流引入分离塔的顶层级。
[0027]
根据本发明的方法可以包括单独采用或根据任何技术上可能的组合采用的一个或多个以下特征:
[0028]-再循环流的甲烷浓度大于90mol%,特别是大于95mol%;
[0029]-再循环流的引入是在从分离塔的顶部开始的第一层级处进行的;
[0030]-再循环流被引入第一上游热交换器中并在第一上游热交换器中通过与来自分离塔的顶流进行热交换而被冷却;
[0031]-所述方法包括将气流分离成引入动态膨胀涡轮的涡轮进料流、和回流,回流在第二上游热交换器中被冷却并经静态膨胀后在比再循环流更低处被引入分离塔;
[0032]-再循环流的冷却包括使再循环流流经第二热交换器;
[0033]-再循环流的膨胀包括使再循环流流动经过静态膨胀阀;
[0034]-顶部的压缩净化天然气的至少一部分布置成在下游热交换器中与闪蒸气流交换热量;
[0035]-所述方法包括在液化单元上游从压缩净化天然气流中提取再流通流,再流通流被冷却、膨胀并引入分离塔;
[0036]-加压液化天然气流在动态或静态膨胀部件中膨胀,然后被引入闪蒸罐,以被分离成闪蒸气流和引入储存器的膨胀液化天然气;
[0037]-当膨胀液化天然气被引入储存器时,在储存器中形成至少一股闪蒸气流;
[0038]-加压液化天然气流不流经闪蒸罐而直接被引入储存器;
[0039]-来自分离塔的顶流的压缩在与动态膨胀涡轮相连的至少一个第一压缩机中、然后在压缩机械中进行,以便形成压缩净化天然气流,所述压缩机械依次包括第二压缩机、用于第二压缩机中压缩过的气体的冷却器和第三压缩机;
[0040]-来自分馏塔的顶流被冷却并部分冷凝,然后被引入顶罐,乙烷流在顶罐的顶部处被回收,顶罐的底流作为回流被重新引入分馏塔;
[0041]-来自冷却天然气流分离的全部气流没有分离而都形成送到动态膨胀涡轮的涡轮进料流。
[0042]
本发明还涉及一种用于从初始天然气流中提取乙烷的设备,包括:
[0043]-至少一个第一上游热交换器,适于冷却初始天然气流,以形成冷却天然气流;
[0044]-分离器,用于将冷却天然气流分离成液流和气流;
[0045]-膨胀液流的部件;
[0046]-分离甲烷和c2+烃的分离塔和将来自膨胀的液流的至少一股流在第一高度处引入分离塔的系统;
[0047]-由气流形成涡轮进料流的系统;
[0048]-适于膨胀所述涡轮进料流的动态膨胀涡轮、以及将来自动态膨胀涡轮的膨胀流在第二高度处引入分离塔的系统,
[0049]-分馏塔、将来自分离塔的富含c2+烃的底流引入分馏塔的系统、以及从分馏塔回收乙烷流的系统;
[0050]-回收和压缩来自分离塔的顶流的至少一部分以形成压缩净化天然气流的系统;
[0051]-所述压缩净化天然气流用的液化单元,适于形成加压液化天然气流;
[0052]-用于对加压液化天然气流进行闪蒸膨胀的系统、以及回收膨胀液化天然气的储存器;
[0053]-回收来自所述加压液化天然气流膨胀的至少一股闪蒸气流的系统;
[0054]-压缩所述至少一股闪蒸气流的系统,
[0055]
其特征在于:
[0056]-将压缩闪蒸气流分离成燃料流和再循环流的系统;
[0057]-冷却并至少部分地膨胀所述再循环流并将冷却和膨胀的再循环流引入分离塔的顶层级的系统。
附图说明
[0058]
通过阅读仅作为例子给出并参照附图进行的以下描述,将更好地理解本发明,附图中:
[0059]
图1是显示用于实施根据本发明的提取乙烷的第一种方法的第一种设备的流程图;
[0060]
图2是类似于图1所示示意图的、用于实施根据本发明的提取乙烷的第二种方法的第二种设备的流程图;
[0061]
图3是类似于图1所示示意图的、用于实施根据本发明的提取乙烷的第三种方法的第三种设备的流程图;
[0062]
图4是类似于图1所示示意图的、用于实施根据本发明的第四种提取方法的第四种设备的流程图;
[0063]
图5是类似于图2所示示意图的、用于实施根据本发明的第五种提取方法的第五种设备的流程图。
具体实施方式
[0064]
在整个下文中,将使用相同标号来指示液流和运载流体的管道,所考虑的压力是绝对压力,所考虑的百分比是摩尔百分比。
[0065]
所描述的方法是在过程模拟器上建模的。定义了压缩机的多变效率为82%,涡轮的绝热效率为86%。
[0066]
图1中显示了根据本发明的用于提取乙烷的第一种设备10。
[0067]
该设备10旨在从初始天然气流12同时生产富含乙烷流14、富含c3+烃的底流16、膨胀液化天然气18、和燃料流20,其有利地可在设备10中再使用。
[0068]
参照图1,设备10包括乙烷提取单元22、液化单元24以及用于液化天然气的闪蒸和储存单元26。
[0069]
提取单元22包括第一和第二上游热交换器28、30、分离罐32和用于分离甲烷和c2+烃的分离塔34。在此,分离塔34设有底部再沸器35。
[0070]
该提取单元22进一步包括动态膨胀涡轮36,该动态膨胀涡轮与第一压缩机38、第二压缩机40相联,每个压缩机38、40在下游都设有冷却器42、44。
[0071]
该提取单元22进一步包括底部泵46、设有底部再沸器50和回流系统52的分馏塔48,回流系统52包括冷却器54、回流罐56和回流泵58。
[0072]
天然气液化单元24是已知的单元,特别是c3mr或dmr单元。
[0073]
在图1所示的例子中,闪蒸和储存单元26包括膨胀部件60(这里是动态膨胀涡轮)、闪蒸罐62、和用于将液化天然气输送到储存器66的泵64。在变型中,膨胀部件60是静态膨胀阀。
[0074]
储存器66是例如绝热储存罐。
[0075]
在本例中,闪蒸和储存单元26进一步包括下游热交换器68,如果合适的话还包括抽吸罐70、和压缩装置72,压缩装置72包括串联安装的多个压缩机74,所述多个压缩机之间由冷却器76隔开。
[0076]
现在将描述根据本发明的第一种方法,该第一种方法在设备10中实施。
[0077]
形成流12的初始天然气有利地是干燥的、至少部分脱碳的、脱硫的天然气。
[0078]
术语“至少部分脱碳”意指初始天然气流13中的二氧化碳浓度有利地小于或等于50ppmv。
[0079]
类似地,水的浓度小于1ppmv,有利地小于0.1ppmv。
[0080]
包括硫化氢的含硫元素的浓度小于10ppmv,有利地小于或等于4ppmv。
[0081]
在下表中给出了初始天然气流12的摩尔组成的例子。
[0082]
[表1]
[0083] 摩尔分数(%)氮气0.19甲烷90.62乙烷6.56丙烷2.05异丁烷0.25正丁烷0.23c5+0.09
[0084]
更一般地,初始天然气流12中的甲烷的摩尔分数在75mol%至95mol%之间,c2烃的摩尔分数在3mol%至12mol%之间,c3+烃的摩尔分数在1mol%至8mol%之间。
[0085]
初始天然气流12的流量例如大于2 000kmol/h,例如在2 000kmol/h至70 000kmol/h之间,特别是等于55 000kmol/h。
[0086]
初始天然气流12的温度接近环境温度,特别是在0℃至40℃之间,这里等于21.5℃,初始天然气流的压力有利地大于35巴,特别是大于70巴,在本例中等于81巴。
[0087]
初始天然气12被引入第一热交换器28以在其中被冷却。它形成冷却天然气流80。初始天然气12在这里是超临界的,因此它简单地被冷却。在变型中,初始天然气不是超临界的,在第一热交换器28中至少部分地被冷凝。
[0088]
冷却天然气流的温度低于-20℃,特别是在-25℃至-45℃之间,特别是等于-37℃。
[0089]
然后,冷却天然气流80被引入分离罐32,以在其中被分离成液流82和气流84,液流82在分离罐32的底部处被回收,气流84在分离罐32的顶部处被回收。液流82的流量可以是零,特别是当冷却天然气流80是超临界的时。
[0090]
液流82流经静态膨胀阀86,以形成混合膨胀相88。混合膨胀相88的压力小于50巴,特别是小于30巴,例如等于28.7巴。混合膨胀相88在分离塔34的下部的高度n1处被引入。
[0091]
气流84被分为主涡轮进料流90和副回流92。
[0092]
涡轮进料流90的摩尔流量大于回流92的摩尔流量,特别是在回流92的摩尔流量的5%至25%之间。
[0093]
涡轮进料流90被引入动态膨胀涡轮36,以在其中被膨胀到小于50巴、特别是小于30巴、例如等于28.7巴的压力。
[0094]
涡轮进料流90的动态膨胀允许回收超过10 000kw(千瓦)的能量,例如10 865kw的能量。
[0095]
来自动态膨胀涡轮36的冷却膨胀流94的温度例如低于-70℃,特别是低于-80℃,例如等于-80.8℃。
[0096]
然后,冷却膨胀流94在位于高度n1上方的高度n2处被引入分离塔34。
[0097]
回流92被引入静态膨胀阀96,以便在其中被膨胀到小于50巴、特别是小于30巴、尤其是等于28.7巴的压力。回流在第二上游热交换器30中被冷却到低于-80℃、特别是低于-90℃、特别是等于-95.8℃的温度。
[0098]
膨胀和冷却的回流在分离塔34顶部处位于高度n2上方的高度n3处被引入分离塔34。
[0099]
分离塔34的压力优选在10巴到40巴之间,特别是在20巴到40巴之间,例如大致等于28.5巴。
[0100]
分离塔34产生顶流98。顶流98在第二上游热交换器30中被加热,然后在第一上游热交换器28中以与初始天然气12逆流的方式被加热,以形成加热顶流100。
[0101]
加热顶流100的温度大于0℃,特别是大于15℃,例如等于17.6℃。
[0102]
然后,加热顶流100在与涡轮36相连的压缩机38中被压缩,然后在冷却器42中被冷却,以获得压力大于30巴、特别是等于34.6巴的流。
[0103]
然后其在压缩机40中被再压缩,然后在冷却器44中被冷却,以产生用于液化单元24的压缩净化天然气流102。
[0104]
压缩净化天然气流102的压力大于60巴,特别是大于80巴,例如等于91巴。它的温度大于0℃,特别是大于10℃,更特别的是等于21.5℃。
[0105]
冷却器42、44在此由温度小于10℃、特别是等于7℃的冷却流供给。该冷却流可以尤其是空气或水。
[0106]
压缩净化天然气流102富含甲烷。它具有的甲烷浓度大于99.0mol%,特别是等于99.1mol%。它具有的氮气浓度低,特别是小于1.0mol%,并且其c2+烃浓度低,特别是其乙烷浓度小于0.5mol%,大致等于0.2mol%的乙烷。
[0107]
分离塔34在底部产生富含c2+烃的底流106。该底流106例如含有初始天然气10中所含乙烷的多于95mol%、以及在该流中含有的100mol%的c3+烃。
[0108]
底流106的温度大于10℃,特别是在20℃至30℃之间,例如等于23.2℃。该底流含有小于1000ppmv的二氧化碳,有利的是含有在200ppmv至500ppmv之间的二氧化碳,例如313ppmv的二氧化碳。该底流的甲烷浓度小于5mol%,例如在0mol%至3mol%之间,特别是小于1mol%。
[0109]
下表说明了底流106的组成的例子。
[0110]
[表2]
[0111] 摩尔分数(%)氮气0.0甲烷0.21乙烷70.5丙烷22.8异丁烷2.8正丁烷2.6c5+0.97
[0112]
从分离塔34在低于高度n1的高度n5处提取第一侧向再沸流108,高度n5例如位于从分离塔34顶部开始的第20层级处。
[0113]
第一再沸液流108被带到第一热交换器28,以在热交换器28中通过热交换、特别是与初始天然气12的热交换,被加热到大于0℃、特别是等于8.25℃的温度。然后,再沸流108在位于高度n5下方的高度n6处被重新引入分离塔34,高度n6例如在从塔34顶部开始的第21层级处。
[0114]
类似地,第二再沸液流110在低于高度n6的高度n7处、例如从分离塔34顶部开始的第22层级从分离塔34中提取,以被带到底部再沸器35,以便在其中被加热到大于0℃、例如等于10.7℃的温度。大于1mw(兆瓦)、例如等于4mw的能量被提供给第二再沸液流110。
[0115]
然后,第二再沸液流110在位于高度n7下方的高度n8处返回到分离塔34。例如,高度n8位于从顶部开始的第23层级处。
[0116]
底流106被泵送到泵46,以被引入分馏塔48的中间高度p1处。
[0117]
分馏塔48在顶部处产生含有小于1mol%的c3+烃、特别是小于1mol%的丙烷的顶流112。
[0118]
顶流112在冷却器54中部分地冷凝,然后在回流罐56中分离,以便在顶部形成富乙烷流14,而在底部形成液体回流114,液体回流114在由回流泵58泵送后被重新引入分馏塔48的顶部。
[0119]
富含乙烷流14含有初始天然气12中所含乙烷的超过96mol%。它含有超过97mol%的乙烷。
[0120]
富含乙烷流14在此是气态的。在变型(未显示)中,富含乙烷流14是取自液流114的
液体。
[0121]
c3+烃流含有小于500ppmv的乙烷,特别是小于100ppmv的乙烷。
[0122]
压缩净化天然气流102被带入液化单元24,液化单元24以已知的方式产生加压液化天然气流120。
[0123]
加压天然气流的压力大于20巴,特别是在20巴至90巴之间,有利地是等于73巴。它的温度低于-120℃,特别是低于-130℃,有利地等于-136.8℃。
[0124]
压缩液化天然气120被引入膨胀部件60,在此被引入动态膨胀涡轮。压缩液化天然气被膨胀到小于5巴、特别是小于2巴、例如等于1.25巴的压力,以形成闪蒸液化天然气流122。
[0125]
闪蒸液化天然气流122被引入闪蒸罐62,以在其中被分离成膨胀液化天然气流124和第一闪蒸气流126。
[0126]
膨胀液化天然气流124借助泵64被泵送入储存罐66,以形成膨胀液化天然气18。
[0127]
第一闪蒸气流126在闪蒸罐62的顶部被回收。它被引入下游热交换器68,以便在那里以与压缩净化天然气102的一部分逆流的方式被加热,该一部分在闪蒸罐62上游被重新引入闪蒸液化天然气流122中。
[0128]
在下游热交换器68中进行热交换后,这样形成的加热闪蒸气流130具有高于-60℃、特别是大致等于5℃的温度。它具有非常高的甲烷浓度,甲烷浓度例如大于80mol%,例如大于85mol%,特别是大于90mol%。这种浓度有利地大于95mol%的甲烷,特别是大于96mol%的甲烷,例如等于96.46mol%的甲烷。
[0129]
它具有的氮气浓度小于20mol%,例如小于15mol%,特别是小于10mol%。所述浓度有利地小于5mol%,特别是小于4mol%,例如大致等于3.54mol%的氮气。
[0130]
加热闪蒸气流130具有的乙烷浓度小于50ppmv,特别是小于10ppmv,例如等于5ppmv。
[0131]
在流经抽吸瓶70后,加热闪蒸气流130在压缩装置72中被压缩到大于25巴、特别是大于30巴、例如等于60巴的压力,以产生压缩闪蒸气流132。
[0132]
压缩闪蒸气流132被分离成燃料流20和再循环流134。
[0133]
燃料流20用于被送到设备10的燃气网中,以供应例如天然气液化单元24的燃气轮机或用于供应发电单元的燃气轮机,发电单元例如用于供应设备10的压缩机40或其他装备。
[0134]
再循环流134具有的压力大于30巴,特别是大于50巴,例如等于58.5巴。
[0135]
再循环流被相继地输送到第一热交换器28,然后进入第二热交换器30,以便在其中被冷却到低于-80℃、特别是低于-90℃、例如等于-95.5℃的温度。
[0136]
然后,再循环流134在静态膨胀阀136中被膨胀到小于50巴、特别是小于30巴、例如等于28.7巴的压力,以便在分离塔34的顶部高度n9处被引入分离塔34,顶部高度n9例如在从分离塔34的顶部开始的第一层级处。高度n9位于用于引入膨胀冷却回流的高度n3的上方。
[0137]
如上所述,来自闪蒸气流126的再循环流134极富含甲烷,因为乙烷保留在液化天然气18中,或者在分离塔34中然后在分馏塔48中被相继地提取。
[0138]
因此,无论分离塔34的顶流98的质量如何波动,在分离塔34顶部处引入的回流的
组成都保持极富含甲烷。
[0139]
新回流的存在不仅在该方法实施时、而且也在设计阶段的过程中都提供了操作灵活性。
[0140]
因此,可以总体优化乙烷提取单元22和液化单元24之间的能量消耗,以调整两个单元22、24的参数,以便尽可能好地选择如两个单元22、24中所要求的压缩机及其驱动模式。因此,投资成本被大幅降低,而且也大幅降低了运行成本,如在下面描述的例子中会看到的。
[0141]
在变型(未显示)中,加热顶流100在与涡轮36相连的压缩机38的出口处、在压缩机械中被压缩,压缩机械包括相同功率的两个压缩层级,总功率等于压缩机40的功率。该压缩机械包括中间冷却器,中间冷却器在压缩层级之间冷却气体。这样得到的布置可以节省5.8mw(兆瓦)的功率。
[0142]
图2中显示了用于实施根据本发明的第二种方法的第二种设备140。
[0143]
根据本发明的第二种方法与根据本发明的第一种方法类似。它与根据本发明的第一种方法的不同之处在于,该第二种方法包括从压缩净化天然气流102中提取再流通流142的步骤。
[0144]
再流通流142的摩尔流量有利地小于提取再流通流142之后、将引入液化单元22的剩余的压缩净化天然气流102的摩尔流量。
[0145]
再流通流142具有的压力大于50巴,特别是大于80巴,例如等于90巴。该再流通流相继地被引入第一热交换器28,然后引入第二热交换器30,以便在其中被冷却到低于-90℃、优选低于-95℃、例如大致等于-95.4℃的温度。
[0146]
然后,再流通流142被膨胀到小于50巴、特别是小于30巴、尤其是等于28.7巴的压力,并在再循环流134和回流92之间被引入分离塔34。
[0147]
图3中显示了用于实施根据本发明的第三种方法的第三种设备150。
[0148]
该设备150与第一种设备10的不同之处在于,设备150包括用于收集和再压缩储存器66中形成的蒸发气体的系统152。
[0149]
收集系统152包括保护罐154和压缩装置156,压缩装置156包括由冷却器160两两间隔开的多个压缩层级158。
[0150]
源于储存器66中的液化天然气蒸发的第二闪蒸气流162在储存器66的顶部处被收集,然后被引入压缩装置156,以在其中被压缩到大于25巴、特别是在26巴至70巴之间、例如等于60巴的压力。
[0151]
这样产生的第二压缩闪蒸气流164被分离成燃料流20和再循环流134,再循环流134在热交换器28、30中冷却并在膨胀阀136中膨胀之后,被重新引入分离塔34。
[0152]
有利的是,在图3所示的例子中,设备150没有膨胀部件60。来自液化单元24的压缩液化天然气120直接被引入用于液化天然气的储存器66中,并在储存器66中闪蒸。
[0153]
图4中显示了用于实施根据本发明的第四种方法的第四种设备170。
[0154]
第四种设备170与第一种设备10的不同之处在于,储存单元66如第三种设备150那样配有用于收集蒸发气体的系统152。
[0155]
在实施根据本发明的第四种方法的过程中,第一压缩闪蒸气流132和第二压缩闪蒸气流164被混合,然后混合物被分离成燃料流20和再循环流134。
[0156]
像前面一样,再循环流134在流经热交换器28、30、然后在静态膨胀阀136中被膨胀之后被重新引入分离塔34中。
[0157]
图5中显示用于实施根据本发明的第五种方法的第五种设备200。
[0158]
第五种方法与图2所示的第二种方法的不同之处在于,从罐32中回收的全部气流84没有分离而都形成送到动态膨胀涡轮36的涡轮进料流90。
[0159]
通过刚描述过的本发明,可以保持分离塔34的回流的组成大致恒定,从而防止滚雪球效应,这种滚雪球效应在没有再循环流134供应的情况下,从分离塔34中提取的顶流98的组成波动时会出现。
[0160]
因此,所述方法既简单又有效地保持提取的乙烷的恒定浓度,而不会增加投资成本或运行成本。
[0161]
该方法的能耗详见下表。
[0162]
[表3]
[0163][0164]
如上表中所指示的,在存在从再循环流134产生回流的情况下消耗的总功率代表了所消耗功率和规定功率除以该设备所生产的液化天然气流量的显著减少。

技术特征:
1.一种用于从初始天然气流(12)中提取乙烷的方法,包括以下步骤:-在至少一个第一上游热交换器(28)中冷却初始天然气流(12),以形成冷却天然气流(80);-将冷却天然气流(80)分离成液流(82)和气流(84);-膨胀所述液流(82)并将来自液流(82)的至少一股流在第一高度(n1)处引入用于分离甲烷和c2+烃的分离塔(34);-由气流(84)形成涡轮进料流(90);-在动态膨胀涡轮(36)中膨胀所述涡轮进料流(90),并将来自动态膨胀涡轮(36)的膨胀流(94)在第二高度(n2)处引入分离塔(34);-将从分离塔(34)回收的富含c2+烃的底流引入分馏塔(48),并从分馏塔(48)回收乙烷流(14);-回收并压缩来自分离塔(34)的顶流(98)的至少一部分以形成压缩净化天然气流(102);-在液化单元(24)中对压缩净化天然气流(102)进行液化以形成加压液化天然气流(120);-对加压液化天然气流(120)进行闪蒸膨胀,并在储存器(66)中回收膨胀液化天然气(18);-回收来自所述加压液化天然气流(120)膨胀的至少一股闪蒸气流(126;162);-压缩所述至少一股闪蒸气流(126;162),其特征在于以下步骤:-将压缩闪蒸气流(132;164)分离成燃料流(20)和再循环流(134);-至少部分地冷却并膨胀所述再循环流(134),然后将冷却和膨胀的再循环流引入分离塔(34)的顶层级。2.根据权利要求1所述的方法,其中,再循环流(134)的甲烷浓度大于90mol%,特别是大于95mol%。3.根据权利要求1或2所述的方法,其中,再循环流(134)的引入是在从分离塔(34)顶部开始的第一层级进行的。4.根据前述权利要求中任一项所述的方法,其中,再循环流(134)被引入第一上游热交换器(28)中并在第一上游热交换器中通过与来自分离塔(34)的顶流(98)进行热交换而被冷却。5.根据前述权利要求中任一项所述的方法,其中,所述方法包括将气流(84)分离成引入动态膨胀涡轮(36)的涡轮进料流(90)、和回流(92),回流(92)在第二上游热交换器(30)中被冷却并经静态膨胀后在比再循环流(134)更低处被引入分离塔(34)。6.根据权利要求5所述的方法,其中,再循环流(134)的冷却包括使再循环流(134)流经第二热交换器(30)。7.根据前述权利要求中任一项所述的方法,其中,再循环流(134)的膨胀包括使再循环流(134)流动经过静态膨胀阀(136)。8.根据前述权利要求中任一项所述的方法,其中,顶部的压缩净化天然气(102)的至少一部分布置成在下游热交换器(68)中与闪蒸气流(126)交换热量。
9.根据前述权利要求中任一项所述的方法,其中,所述方法包括在液化单元(24)上游从压缩净化天然气流(102)中提取再流通流(142),再流通流(142)被冷却、膨胀并引入分离塔(34)。10.根据前述权利要求中任一项所述的方法,其中,加压液化天然气流(120)在动态或静态膨胀部件(60)中膨胀,然后被引入闪蒸罐(62),以被分离成闪蒸气流(126)和引入储存器(66)的膨胀液化天然气(124)。11.根据前述权利要求中任一项所述的方法,其中,当膨胀液化天然气被引入储存器(66)时,在储存器(66)中形成至少一股闪蒸气流(162)。12.根据权利要求11所述的方法,其中,加压液化天然气流(120)不流经闪蒸罐(62)而直接被引入储存器(66)。13.根据前述权利要求中任一项所述的方法,其中,来自分离塔(34)的顶流(98)的压缩在与动态膨胀涡轮(36)相连的至少一个第一压缩机(38)中、然后在压缩机械中进行,以便形成压缩净化天然气流,所述压缩机械依次包括第二压缩机、用于第二压缩机中压缩过的气体的冷却器和第三压缩机。14.根据前述权利要求中任一项所述的方法,其中,来自分馏塔(48)的顶流(112)被冷却并部分冷凝,然后被引入顶罐(56),乙烷流(14)在顶罐(56)的顶部处被回收,顶罐(56)的底流作为回流被重新引入分馏塔(48)。15.根据前述权利要求中任一项所述的方法,其中,来自冷却天然气流(80)分离的全部气流(84)没有分离而都形成送到动态膨胀涡轮(36)的涡轮进料流(90)。16.一种用于从初始天然气流(12)中提取乙烷的设备,包括:-至少一个第一上游热交换器(28),适于冷却初始天然气流(12),以形成冷却天然气流(80);-分离器,用于将冷却天然气流(80)分离成液流(82)和气流(84);-膨胀液流(82)的部件;-分离甲烷和c2+烃的分离塔(34)和将来自膨胀的液流(82)的至少一股流在第一高度(n1)处引入分离塔(34)的系统;-由气流(84)形成涡轮进料流(90)的系统;-适于膨胀所述涡轮进料流(90)的动态膨胀涡轮(36)、以及将来自动态膨胀涡轮(36)的膨胀流(94)在第二高度(n2)处引入分离塔(34)的系统,-分馏塔(48)、将来自分离塔(34)的富含c2+烃的底流(106)引入分馏塔(48)的系统、以及从分馏塔(48)回收乙烷流(14)的系统;-回收和压缩来自分离塔(34)的顶流(98)的至少一部分以形成压缩净化天然气流(102)的系统;-所述压缩净化天然气流(102)用的液化单元,适于形成加压液化天然气流(120);-用于对加压液化天然气流(120)进行闪蒸膨胀的系统、以及回收膨胀液化天然气(18)的储存器(66);-回收来自所述加压液化天然气流(120)膨胀的至少一股闪蒸气流(126;162)的系统;-压缩所述至少一股闪蒸气流(126;162)的系统,其特征在于:

将压缩闪蒸气流(132;164)分离成燃料流(20)和再循环流(134)的系统;-冷却并至少部分地膨胀所述再循环流(134)并将冷却和膨胀的再循环流引入分离塔(34)的顶层级的系统。

技术总结
从初始天然气流中提取乙烷的方法和相应的设备。这种方法包括以下步骤:回收和压缩来自分离塔(34)的顶流(98)以形成压缩净化天然气流(102);在液化单元(24)中对压缩净化天然气流(102)进行液化以形成加压液化天然气流(120);对加压液化天然气流(120)进行闪蒸膨胀并回收于储存器(66)中;回收和压缩来自膨胀的闪蒸气流(126);将压缩闪蒸气流(132)分离成燃料流(20)和再循环流(134);对再循环流(134)进行冷却和膨胀,然后将冷却和膨胀的再循环流引入分离塔(34)的顶层级。入分离塔(34)的顶层级。入分离塔(34)的顶层级。


技术研发人员:S
受保护的技术使用者:德希尼布能源法国公司
技术研发日:2021.11.09
技术公布日:2023/9/20
版权声明

本文仅代表作者观点,不代表航家之家立场。
本文系作者授权航家号发表,未经原创作者书面授权,任何单位或个人不得引用、复制、转载、摘编、链接或以其他任何方式复制发表。任何单位或个人在获得书面授权使用航空之家内容时,须注明作者及来源 “航空之家”。如非法使用航空之家的部分或全部内容的,航空之家将依法追究其法律责任。(航空之家官方QQ:2926969996)

航空之家 https://www.aerohome.com.cn/

航空商城 https://mall.aerohome.com.cn/

航空资讯 https://news.aerohome.com.cn/

分享:

扫一扫在手机阅读、分享本文

评论

相关推荐