一种脑肿瘤MRI图像分割方法、系统、电子设备及存储介质
未命名
08-29
阅读:156
评论:0

一种脑肿瘤mri图像分割方法、系统、电子设备及存储介质
技术领域
1.本发明属于医学图像分割领域,具体涉及一种脑肿瘤mri图像分割方法、系统、电子设备及存储介质。
背景技术:
2.随着计算机技术的快速发展,医学成像技术也在向数字化的方向发展。目前广泛应用的医学成像方式主要分为四类:x射线成像(x-ct)、磁共振成像(mri)、核医学成像(nmi)和超声成像(ui)。磁共振成像(磁共振成像,mri)是一种非侵入性的脑肿瘤成像技术,可以产生高分辨率、非侵入性的脑图像,为医生的临床诊断提供准确的信息,是诊断和治疗脑肿瘤的重要工具。同时,脑瘤医学图像分割技术是脑瘤医学图像处理和分析中的关键技术。
3.脑瘤医学图像分割是一个根据区域内的相似性以及区域间的不同来分离图像中有关结构的过程。早期的图像分割完全是靠人工完成的,此方法是医学专家在数以百计的切片图像上进行对边界的人工描绘,根据描绘结果假设与其周围组织的三维结构及空间关系,并以此作为制定治疗计划的基础。脑肿瘤的人工分割方法消耗了大量的人力和物力,并且也受到了的很多的限制。因此,研究一种脑肿瘤mri图像的自动分割方法,对脑肿瘤患者的早期诊断和治疗具有重要意义。
技术实现要素:
4.为了克服现有技术存在的缺陷与不足,本发明提供一种脑肿瘤mri图像分割方法、系统、电子设备及存储介质。
5.本发明的技术方案如下:
6.一种脑肿瘤mri图像分割方法,包括以下步骤:
7.s1获取原始数据集,并对原始数据集进行预处理;
8.s2将与处理后的数据输入到混合u-net模型中进行处理,得到分类结果;所述混合u-net模型是基于u-net模型和cnn模型构建的。
9.进一步的,所述预处理包括:图像尺寸归一化和灰度归一化。
10.进一步的,所述图像尺寸归一化和灰度归一化具体为:将原始图像大小512*512减小到128*128;去除不参与分割操作的黑色背景区域,得到尺寸为128*128的脑肿瘤图像;将图像以50%的概率在左右和前后方向上随机翻转,并在x方向或y方向平移图像,将图像划分为多个大小相似的非重叠区域,并将直方图均衡应用于图像的每个部分。
11.进一步的,所述s2具体为:
12.使用u-net模型对预处理后的数据进行分割;
13.使用cnn模型模型对分割后的数据进行分类,得到分类结果。
14.进一步的,在使用改进的u-net模型对预处理后的数据进行分割时,将u-net模型中的卷积层的通道数以2次幂递增,从第1层的64开始,到顶层的1024结束;在每个最大池化
层之后添加dropout层,以防止过拟合;在u-net模型的顶层增加一个卷积层;在上采样时将转置卷积层的核大小设置为(2,2),步幅为2;在合并特征图时,采用级联的方式对上采样和下采样路径进行合并;最终输出层设置为一个1x1内核大小卷积层用于分类。
15.进一步的,所述cnn模型包括三个卷积块,每个卷积块均包括卷积层和最大池化层,并且采用标准步幅。
16.本发明还提供一种脑肿瘤mri图像分割系统,包括:
17.数据处理模块,用于获取原始数据集,并对原始数据集进行预处理;
18.分割模块,用于使用改进的u-net模型对预处理后的数据进行分割;
19.分类模块,用于使用mri分类模型对分割后的数据进行分类,得到分类结果。
20.损失函数,采用cross-entropy(交叉熵损失)作为损失函数。
21.本发明还提供一种电子设备,包括存储器及处理器,所述存储器用于存储计算机程序,所述处理器运行所述计算机程序以使所述电子设备执行根据上述的脑肿瘤mri图像分割方法。
22.本发明还提供一种计算机可读存储介质,其特征在于,其存储有计算机程序,所述计算机程序被处理器执行时实现上述的脑肿瘤mri图像分割方法。
23.本发明的技术效果:
24.本发明提供一种脑肿瘤mri图像分割方法、系统、电子设备及存储介质,所述方法包括获取原始数据集,并对原始数据集进行预处理;将与处理后的数据输入到混合u-net模型中进行处理,得到分类结果;所述混合u-net模型是基于u-net模型和cnn模型构建的。实现了mri图像的脑肿瘤分割,解放了大量的人力和物力。
附图说明
25.附图大体上通过举例而不是限制的方式示出各种实施例,并且与说明书以及权利要求书一起用于对所发明的实施例进行说明。在适当的时候,在所有附图中使用相同的附图标记指代同一或相似的部分。这样的实施例是例证性的,而并非旨在作为本装置或方法的穷尽或排他实施例。
26.图1示出了本发明的整体流程示意图;
27.图2示出了本发明的mri图像分割预处理步骤流程示意图;
28.图3示出了本发明的混合u-net的结构示意图。
具体实施方式
29.需要说明的是,在不冲突的情况下,本技术中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本技术。
30.实施例
31.如图1所示,本实施例提供一种基于unet结合cnn的改进的混合-unet脑肿瘤mri图像分割方法,包括下述步骤:
32.s1:首先对原始数据进行预处理;
33.如图2所示,对数据集中的原始图像进行归一化处理,包括图像尺寸归一化和灰度归一化,将图像分辨率统一调整为128*128,将图像的3通道改为1通道,增强图像颜色的对
比度。去除部分不参与分割操作的黑色背景区域,得到尺寸为128*128的脑肿瘤图像,增加肿瘤区域在图像中的比例;将图像以50%的概率在左右和前后方向上随机翻转,并在x或y方向(或两者)平移图像;接下来,对比度限制自适应直方图均衡(clahe)将给定图像划分为多个大小相似的非重叠区域,并将直方图均衡(he)应用于图像的每个部分,使得均匀的灰度分布使图像中的隐藏特征更清晰可见。clache的优点是噪声少,计算简单,在图像局部区域输出响应好,防止亮度饱和的发生,有助于比较图像的不同区域。
34.s2:使用改进的u-net模型进行分割;
35.如图1与图3所示,经预处理之后,使用本发明改进的u-net网络进行分割,将输入图像转为为(128,128,1),即将大小为128x128的灰度图像作为输入。卷积层的通道数以2次幂递增,从第1层的64(26)开始,到瓶颈层的1024(210)结束在每个最大池化层之后添加dropout层,以防止过拟合;顶层设置为两个卷积层,每个卷积层有1024个卷积核;用于上采样的转置卷积层的核大小为(2,2),步幅为2;采用级联的方式对上采样和下采样路径的特征图进行合并;最终的输出层只有一个1x1内核大小的卷积层。
36.s3:使用cnn网络进行图像后处理;
37.融合模型第一阶段的分割图片被用于模型第二阶段提出的基于cnn的mri分类模型。为了提高所提出的cnn模型的分类精度,将前一阶段的分割图像作为输入。
38.所提出的cnn模型的卷积层和最大池化层的布局,每个层都使用唯一的卷积块,并且采用标准步幅。默认情况下,步幅设置为(1,1),这意味着卷积核每向右移动一个像素,它也会向下移动一个像素。第一阶段产生的输出图片为1922563,然后缩小到28283。所提出的cnn模型将调整后的图片作为第一个卷积块的输入。第一个卷积块由一个卷积层和一个最大池化层组成。第一卷积层有32个3*3滤波器,最大池化层是2*2。第二个卷积块由两个卷积层和一个最大池化层组成。两个卷积层在3*3配置中都有16个滤波器,而最大池化层在2*2配置中有32个滤波器。同样,两个卷积层和一个最大池化层构成第三个卷积块。最大池化层的滤波器大小为2*2,而第三个卷积层的滤波器大小为3*3,总共有16个滤波器。全连接层应用在第三个卷积块之后,通过将特征空间折叠成单个特征向量来“扁平化”特征。最后,使用三个上采样层和卷积层组合而成的混合层将特征向量分类为七个mri疾病分类。
39.以上所述,仅为本发明优选的具体实施方式,但本发明的保护范围不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。
技术特征:
1.一种脑肿瘤mri图像分割方法,其特征在于,包括以下步骤:s1获取原始数据集,并对原始数据集进行预处理;s2将与处理后的数据输入到混合u-net模型中进行处理,得到分类结果;所述混合u-net模型是基于u-net模型和cnn模型构建的。2.根据权利要求1所述的脑肿瘤mri图像分割方法,其特征在于,所述预处理包括:图像尺寸归一化和灰度归一化。3.根据权利要求2所述的脑肿瘤mri图像分割方法,其特征在于,所述图像尺寸归一化和灰度归一化具体为:将原始图像大小512*512减小到128*128;去除不参与分割操作的黑色背景区域,得到尺寸为128*128的脑肿瘤图像;将图像以50%的概率在左右和前后方向上随机翻转,并在x方向或y方向平移图像,将图像划分为多个大小相似的非重叠区域,并将直方图均衡应用于图像的每个部分。4.根据权利要求1所述的脑肿瘤mri图像分割方法,其特征在于,所述s2具体为:使用u-net模型对预处理后的数据进行分割;使用cnn模型模型对分割后的数据进行分类,得到分类结果。5.根据权利要求4所述的脑肿瘤mri图像分割方法,其特征在于,在使用u-net模型对预处理后的数据进行分割时,将u-net模型中的卷积层的通道数以2次幂递增,从第1层的64开始,到顶层的1024结束;在每个最大池化层之后添加dropout层,以防止过拟合;在u-net模型的顶层增加一个卷积层;在上采样时将转置卷积层的核大小设置为(2,2),步幅为2;在合并特征图时,采用级联的方式对上采样和下采样路径进行合并;最终输出层设置为一个1x1内核大小卷积层用于分类。6.根据权利要求4所述的脑肿瘤mri图像分割方法,其特征在于,所述cnn模型包括三个卷积块,每个卷积块均包括卷积层和最大池化层,并且采用标准步幅。7.一种脑肿瘤mri图像分割系统,其特征在于,包括:数据处理模块,用于获取原始数据集,并对原始数据集进行预处理;分割模块,用于使用改进的u-net模型对预处理后的数据进行分割;分类模块,用于使用mri分类模型对分割后的数据进行分类,得到分类结果。8.一种电子设备,其特征在于,包括存储器及处理器,所述存储器用于存储计算机程序,所述处理器运行所述计算机程序以使所述电子设备执行根据权利要求1-6中所述的脑肿瘤mri图像分割方法。9.一种计算机可读存储介质,其特征在于,其存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1-6中所述的脑肿瘤mri图像分割方法。
技术总结
本发明属于医学图像分割领域,具体涉及一种脑肿瘤MRI图像分割方法、系统、电子设备及存储介质。所述方法包括以下步骤:S1获取原始数据集,并对原始数据集进行预处理;S2将与处理后的数据输入到混合U-Net模型中进行处理,得到分类结果;所述混合U-Net模型是基于U-Net模型和CNN模型构建的。本发明实现在MRI图像中的脑肿瘤分割,解决U-Net网络结构存在的细粒度特征提取能力不足、模型参数量较大,以及原始数据集预处理效果不佳的问题。数据集预处理效果不佳的问题。数据集预处理效果不佳的问题。
技术研发人员:尤佳 唐浩 郭东生 刘慧舟 高锦雄
受保护的技术使用者:海南大学
技术研发日:2023.06.26
技术公布日:2023/8/28
版权声明
本文仅代表作者观点,不代表航家之家立场。
本文系作者授权航家号发表,未经原创作者书面授权,任何单位或个人不得引用、复制、转载、摘编、链接或以其他任何方式复制发表。任何单位或个人在获得书面授权使用航空之家内容时,须注明作者及来源 “航空之家”。如非法使用航空之家的部分或全部内容的,航空之家将依法追究其法律责任。(航空之家官方QQ:2926969996)
航空之家 https://www.aerohome.com.cn/
飞机超市 https://mall.aerohome.com.cn/
航空资讯 https://news.aerohome.com.cn/